多倍長計算手法

平成26年度第3四半期

目次

- 1. はじめに
- 2. Hadamard積分
 - 2.1 端点特異点の積分
 - 2.2 一般式計算
- 3. 3次元反復法の反復回数
 - 3.1 bcg法
 - 3.2 cgs法
- 4. infra問題
 - 4.1 3次元積分計算
 - 4.2 bsgamma計算
- 5.量子モンテカルロ法による物性スペクトル計算
 - 5.1 248倍精度演算結果
 - 5.2 超多倍長計算の演算量

1.はじめに

ファインマンループ積分,量子モンテカルロ法による物性スペクトル計算での精度上の問題が解決を見ましたので,その結果のまとめを中心に記述しました。

また今後,行列計算における反復解法が問題になってくる事が考えられますので,その精度に関して記述しました。

これらの問題はieee754-2008形式の 4倍精度及び拡張精度演算が必要になって くる場合が多く、サーバーx5570,e5430 で主に実行しています。

2.Hadamard積分

積分法は二重指数関数型積分法を使用しています。

2.1 端点特異点の積分

$$\int_{0}^{1} \frac{1}{x(1-x)} dx = \int_{0}^{1} \frac{1}{x} dx + \int_{0}^{1} \frac{1}{1-x} dx = 2 \int_{0}^{1} \frac{1}{x} dx$$

$$\int_{0}^{1} \frac{1}{x} dx = \int_{0}^{1} \frac{1}{1-x} dx$$

積分変数変換区間[ε,1-ε]対応する tの値を[-a,a](a > 0)とする。

$$\int_{0}^{1} \frac{1}{x(1-x)} dx = \lim_{\varepsilon \to 0} \left[\int_{\varepsilon}^{1-\varepsilon} \frac{1}{x(1-x)} dx \right]$$

$$= \lim_{a\to\infty} \left[\int_a^b \pi \cosh(t) dt = \pi(e^a - e^{-a})\right]$$

)積分結果			
	—— 二重打	旨数関数 3	型積分			
	$\epsilon = 10$	0^{-n} , $h =$	0.5^{16}			
			连八店			
n aa	tmax		積分值	4 7 5 7	0.400.4	0 . 00
30	3.78125	実行結果	0.1377527			•
		解析解 -	0.1377527			
40	4.06250	実行結果	0.1825335			
		解析解	0.1825335	<u> 1450</u>	<u>56543</u>	Q+03
50	4.28125	実行結果	0.2271904	668 <u>6</u>	<u>71839</u>	Q+03
		解析解	0.2271904	686	27759	Q+03
60	4.46875	実行結果	0.27406039	9674	83030	Q+03
		解析解	0.27406039	9674	29856	Q+03
70	4.62500	実行結果	0.3204203	6347	79741	Q+03
		解析解	0.3204203	6347	17572	Q+03
80	4.75000	実行結果	0.3630915	5904	59988	Q+03
		解析解	0.3630915	5903	89539	Q+03
90	4.87500	実行結果	0.4114434	5118	93274	Q+03
		解析解	0.4114434	5118	13443	Q+03
100	5.00000	実行結果	0.46623252			•
		解析解	0.4662325			•
		[/J : / /J T	2.10020201		. J . J L	

2.2 一般式計算

Hadamard積分は

$$n = 1 \quad \lim_{\varepsilon \to 0} \left[\int_{0}^{1} \frac{1}{x} dx - \log(\frac{1}{\varepsilon}) \right]$$

$$n > 1$$
 $\lim_{\epsilon \to 0} \left[\int_{0}^{1} \frac{1}{x^{n}} dx - \frac{1}{n-1} (\frac{1}{\epsilon})^{n-1} \right]$

で定義されます。

今二重指数関数型積分で分点が $[\epsilon,1-\epsilon]$ にありそれに対応するtの値を[-a,a] (a>0)とします。

$$I_1 = \int\limits_{-\epsilon}^{1-\epsilon} \frac{1}{x} dx, I_2 = \int\limits_{-\epsilon}^{1-\epsilon} \frac{1}{x^2} dx, I_n = \int\limits_{-\epsilon}^{1-\epsilon} \frac{1}{x^n} dx (n \ge 3)$$

$$\frac{1}{\varepsilon} = 1 + e^{\pi \sinh(a)}$$

$$I_1 = \frac{1}{2} \int_{-a}^{a} \pi \cosh(t) dt = \int_{0}^{a} \pi \cosh(t) dt = \pi \sinh(a)$$

$$I_2 = \int_{-a}^{a} \pi \cosh(t) e^{-\pi \sinh(t)} dt = e^{\pi \sinh(a)} - e^{-\pi \sinh(a)}$$

$$I_1 - log(\frac{1}{\epsilon}) = \pi \sinh(a) - log(1 + e^{\pi \sinh(a)}) = -e^{-\pi \sinh(a)}$$

$$I_2 - \frac{1}{\varepsilon} = -1 - e^{-\pi \sinh(a)}$$

$$I_{n} = \sum_{i=0}^{n-2} \frac{1}{i+1} {}_{n-2}C_{i} \left(e^{\pi(i+1)\sinh(a)} - e^{-\pi(i+1)\sinh(a)} \right)$$

$$\frac{1}{n-1} (\frac{1}{\epsilon})^{n-1} = \frac{1}{n-1} (1 + \sum_{i=1}^{n-1} {}_{n-1} C_i (e^{\pi i \sinh(a)}))$$

$$\text{LTI}_n - \frac{1}{n-1} (\frac{1}{\epsilon})^{n-1} = -\frac{1}{n-1} + \sum_{i=0}^{n-2} \frac{1}{i+1} {}_{n-2} C_i (e^{-\pi(i+1) \sinh(a)})$$

$$\varepsilon = 2^{-53}$$
 t $\delta a = 3.15$ $e^{-\pi \sinh(a)} = 10^{-15.89}$ **c**

Hadamard
$$I_1 = 0$$

Hadamard
$$I_n = -\frac{1}{n-1} (n \ge 2)$$

3.3次元反復法の反復回数

問題は3次元ポアソン方程式

$$\Delta \mathbf{u} + \mathbf{R} \, \frac{\partial \mathbf{u}}{\partial \mathbf{x}} = -\mathbf{f}$$

領域[0,1]×[0,1]×[0,1]

解析解 $u(x, y, z) = e^{xyz} \times \sin(\pi x) \times \sin(\pi y) \times \sin(\pi z)$ 非対称問題。

解法

bcg(biconjugate gradient) 法

$$R = 100, nx = ny = nz = 129$$

cgs(conjugate gradient square)法

$$R = 100, nx = ny = nz = 65$$

収束判定値は共役残差10-12

初期値
$$u(x,y,z) = 0$$

3.1 bcg法

		_	
精度	反復回数	正規化	実測/正規化
56ビット	50001	none	none
60ビット	4315	node	none
64ビット	1579	931	1.69
68ビット	938	826	1.130
72ビット	784	738	1.062
76ビット	593	664	0.893
3倍精度	482	600	0.80
84ビット	439	545	0.80
88ビット	396	497	0.79
92ビット	368	455	0.809
96ビット	336	418	0.80
100ビット	325	386	0.842
104ビット	319	357	0.894
108ビット	313	331	0.940
4倍精度	308	308	
(注)50001 で収束しな		回反復 示しています	•
正規化 P有効ビット	·数=精度の	ビット数+1	
正規化5 308 × (-		效	

性能的には3倍精度が最も効率が良いと言えます。

3.2 cgs法

e5430 cgs	反復回数		
倍精度は1	0000回で収	東せず。	
	反復回数		
精度	ieee	ieee smp	dd
4倍精度	392	448	670
5倍精度	226	155	none
6倍精度	130	131	144
7倍精度	128	128	none
8倍精度	128	128	128
	実行時間(利	少)	
精度	ieee	ieee smp	dd
4倍精度	159.2898	105.5012	95.3938
5倍精度	221.2924	75.4942	none
6倍精度	144.4976	68.8694	39.1221
7倍精度	171.5329	69.8044	none
8倍精度	213.6745	61.7321	70.0613
	q4sum,q5su	m 使用	
精度	反復回数	実行時間	
4倍精度	378	160.5706	
5倍精度	155	157.2171	

- (1) ieee形式,dd形式ともに6倍精度演算が最も効率が良い事を示しています。
- (2) q4sum,q5sumの様に総和演算を無限精度 演算を使用すると、5倍精度の収束が良くなり,ieee でのsmp実行と同じ反復回数となっています。

dd形式cgs反復回数

ビット数	反復回数
95	4931
96	2155
97	3506
98	2811
99	1250
100	1103
101	1080
102	1027
103	815
104	702
105	630
106	670

4 infra 問題

4.1 3次元積分計算

$$\begin{split} \mathbf{I} &= \int_0^1 \int_0^{1-x_1} \int_0^{1-x_1-x_2-x_3-1-x_1-x_2-x_3-x_4} \int_0^1 \frac{1}{D^2} d\Omega \\ d\Omega &= dx_5 dx_4 dx_3 dx_2 dx_1 \\ \mathbf{D} &= \mathbf{C}(\mathbf{x}_3 \mathbf{M}^2 + \mathbf{x}_6 \lambda^2) \\ &+ (\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3)(\mathbf{x}_4 + \mathbf{x}_5)^2 \\ &+ (\mathbf{x}_1 + \mathbf{x}_2)^2 (1 - \mathbf{x}_1 - \mathbf{x}_2) \\ &+ 2\mathbf{x}_3 (\mathbf{x}_1 + \mathbf{x}_2)(\mathbf{x}_4 + \mathbf{x}_5) \\ \mathbf{C} &= \mathbf{x}_3 (1 - \mathbf{x}_1 - \mathbf{x}_2 - \mathbf{x}_3) + (\mathbf{x}_1 + \mathbf{x}_2)(1 - \mathbf{x}_1 - \mathbf{x}_2) \\ \mathbf{x}_6 &= 1 - \mathbf{x}_1 - \mathbf{x}_2 - \mathbf{x}_3 - \mathbf{x}_4 - \mathbf{x}_5 \\ \mathbf{C} &\lambda_{\mathbf{n}} &= 10^{-n} \mathbf{CO}$$
 積分値 $\mathbf{I}_{\mathbf{n}}$ の一次差分,

3次元化

$$I = \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} dx dy dz$$

$$J = (1 - x)^{2} yz$$

$$D = [(1 - x + xy(1 - y)]$$

$$\times [x(1 - y)M^{2} + (1 - x)(1 - z)\lambda^{2}]$$

$$+ [xy^{2}(1 - xy) + (1 - x)^{2}z^{2}$$

$$+ 2x(1 - x)y(1 - y)z]$$

M=0の場合をcase1,M=91.19/0.1057の場合をcase2,M=125.5/0.1057の場合をcase3としています。

	case1 2次差分	一覧表	
n	N=728	N=1456	N=2912
16	5.3018776181	5.3018981105	5.3018981105
17	5.3020175196	5.3018981105	5.3018981105
18	5.3020700159	5.3018981101	5.3018981105
19	5.3016335118	5.3018981100	5.3018981105
20	5.3023935051	5.3018981077	5.3018981105
21	5.3029475759	5.3018981216	5.3018981105
22	5.2971188923	5.3018980753	5.3018981105
23	5.3041142583	5.3018982336	5.3018981105
24	5.3093273173	5.3018981250	5.3018981105
25	5.2943816325	5.3018976075	5.3018981105
26	5.2794768170	5.3018979849	5.3018981105
27	5.3558839326	5.3019004772	5.3018981105
28	5.3091134086	5.3018977130	5.3018981105

Case1 の場合は

積分値は $\log(\frac{1}{\lambda^2})$ の2次式になるので

二次差分を求めています。

$$\lambda_n = 10^{-n}$$

	case2 一次差分一覧表	<u> </u>	
n	N=728	N=1456	N=2912
16	0.000038733241268	0.000038733248507	0.000038733248507
17	0.000038733234064	0.000038733248507	0.000038733248507
18	0.000038733266331	0.000038733248507	0.000038733248507
19	0.000038733326864	0.000038733248507	0.000038733248507
20	0.000038733174086	0.000038733248506	0.000038733248507
21	0.000038733353236	0.000038733248506	0.000038733248507
22	0.000038733544343	0.000038733248510	0.000038733248507
23	0.000038731850666	0.000038733248499	0.000038733248507
24	0.000038732625311	0.000038733248540	0.000038733248507
25	0.000038734471892	0.000038733248546	0.000038733248507
26	0.000038731896322	0.000038733248424	0.000038733248507
27	0.000038724804488	0.000038733248425	0.000038733248507
28	0.000038738845469	0.000038733249112	0.000038733248507
29	0.000038740941884	0.000038733249063	0.000038733248507

	case3 一次差分一覧表	ţ	
n	N=728	N=1456	N=2912
16	0.000021493099355	0.000021493102821	0.000021493102821
17	0.000021493093286	0.000021493102821	0.000021493102821
18	0.000021493115638	0.000021493102821	0.000021493102821
19	0.000021493142483	0.000021493102821	0.000021493102821
20	0.000021493082925	0.000021493102821	0.000021493102821
21	0.000021493117428	0.000021493102821	0.000021493102821
22	0.000021493302447	0.000021493102823	0.000021493102821
23	0.000021492401183	0.000021493102817	0.000021493102821
24	0.000021492629664	0.000021493102839	0.000021493102821
25	0.000021493704654	0.000021493102844	0.000021493102821
26	0.000021492781172	0.000021493102769	0.000021493102821
27	0.000021488800060	0.000021493102792	0.000021493102821
28	0.000021495565878	0.000021493103126	0.000021493102821
29	0.000021496356431	0.000021493103198	0.000021493102821

積分値は $\log(\frac{1}{\lambda^2})$ の一次式となるので一次差分を求めています。 $\lambda_n = 10^{-n}$

4.2 bsgamma計算

これを4次元化して計算しています。

	bsgamma 一次差分結果		
n	N=728	N=1024	N=1456
16	0.000881676036303	0.000881676024318	0.000881676024308
17	0.000881675957819	0.000881676024256	0.000881676024308
18	0.000881676127056	0.000881676024379	0.000881676024308
19	0.000881676192593	0.000881676024096	0.000881676024308
20	0.000881675929067	0.000881676025850	0.000881676024307
21	0.000881675933258	0.000881676026869	0.000881676024308
22	0.000881675979610	0.000881676024874	0.000881676024305

積分値は $\log(\frac{1}{\lambda^2})$ の一次式となりますので

一次差分を求めています。

$$\lambda_{n} = 10^{-n}$$

5.量子モンテカルロ法による物性スペクトル計算

5.1 248倍精度演算結果

x5570 L=20β ,U=10		実行時間(秒))	
精度	有効ビット数	β	n=20	n=100
68倍精度	2161	100	2790	254609
128倍精度	4081	180	16956	1528008
188倍精度	6001	250	50123	4375879
248倍精度	7921	300	100222	9036094
	絶対値最小値-	- 覧		
精度	n=20	n=100		
68倍精度	0.330D-307	0.330D-307		
128倍精度	0.514D-553	0.512D-553		
188倍精度	0.476D-768	0.468D-768		
248倍精度	0.126D-921	0.121D-921		

N=20とN=100での実測値では大きな差は見られません。

5.2 超多倍長計算の演算量

演算量計算	
ここで演算量は	
に比例すると仮	定して
います。	
演算量I(n)	
I(100) = I(2)	20) m
$\Gamma(100) = \Gamma(2)$	
行列積m=3	
精度	m
68倍精度	2.805
128倍精度	2.797
188倍精度	2.777
248倍精度	2.797
68倍精度演算の	DI 75
正規化した演算	
I(P) P有効ビット	
KE) FA SOL OL	· 安文
D	
$I(P) = \left(\frac{P}{21.64}\right)^{m}$	I(2161)
2161	1(2101)
乗算 m=2	
精度	m
128倍精度	1.894
188倍精度	1.888
248倍精度	1.902