素粒子・原子核・宇宙「京からポスト京に向けて」シンポジウム @ 筑波大学東京キャンパス文京校舎 2019/01/10

超新星爆発の長時間計算と 元素合成に向けて

滝脇知也(国立天文台)

固武慶(福岡大学)

中村航(福岡大学)

諏訪雄大(京都産業大学)

黒田仰生(ダルムシュタットエ科大学)

鈴木昭宏(国立天文台)

朝比奈雄太(国立天文台)

サブ課題B 物質創成史の解明と物質変換

長期目標 超新星爆発の長時間計算をする > 放出される元素が分かる > 元素の起源 (1)長時間計算用のコード開発 (2)放出される元素の計算

・時流に合わせた新規課題設定 キーワードは「重力波」
(3) 連星中性子星を作る親星の超新星爆発
(4) 自転爆発からの重力波放出
(5) 磁場をシミュレーションに取り入れる

重点課題9の中間評価、ヒアリングコメントより

「サイエンスとしては順調に成果が出ている。 一方で、ポスト京に向けて新しい方向性が出ているかと言えば必ずしも そうではないように思う。」

・時流に合わせた新規課題設定
 キーワードは「重力波」
 (3) 連星中性子星を作る親星の超新星爆発
 (4) 自転爆発からの重力波放出
 (5) 磁場をシミュレーションに取り入れる

長期目標
 超新星爆発の長時間計算をする
 > 放出される元素が分かる
 > 元素の起源
 (1)長時間計算用のコード開発
 (2)放出される元素の計算

時流に合わせた新規課題設定
 キーワードは「重力波」
 (3) 連星中性子星を作る親星の超新星爆発
 (4) 自転爆発からの重力波放出
 (5) 磁場をシミュレーションに取り入れる

超新星爆発の長時間計算で期待される成果 これまでの超新星の3次元計算では、計算コストの高さから、現 計算資源ではバウンス後500msに限られ、以下の問題がある. n13-R0.0-3D 210ms 〇爆発エネルギーが決まらない 〇爆発的元素合成も計算できない 戦略分野5の時代の研究成果 800 0.3 erg n13 R0 0-3D 700 25% 0.25 R1.0-3D

典型的な爆発エネ ルギーの10⁵¹ erg に届くのか? ニッケルは十分 合成できるのか?

e.g. Takiwaki et al. (2016), MNRAS Letters

- 長期目標
 超新星爆発の長時間計算をする
 ⇒ 放出される元素が分かる
 ⇒ 元素の起源
 (1)長時間計算用のコード開発
 (2)放出される元素の計算
- 時流に合わせた新規課題設定
 キーワードは「重力波」
 (3) 連星中性子星を作る親星の超新星爆発
 (4) 自転爆発からの重力波放出

開発課題:メッシュの粗視平均化

3次元の球座標の計算は 極でメッシュ幅Lが小さく、△tが短くしかとれない.

 $L \sim r \Delta \theta \Delta \phi \qquad \Delta t \sim L/c_{\rm s}$

⇒複数のメッシュを同一視して平均化し、同一視した大きなメッシュにおいて Δ*t*を決める.

左:3次元のテスト計算

平均衝撃波半径のような平均量(積分量)は粗視化に依らない.

Nakamura et al. in prep. 去年報告済

長期目標 超新星爆発の長時間計算をする > 放出される元素が分かる > 元素の起源 (1) 長時間計算用のコード開発 (2) 放出される元素の計算

- 時流に合わせた新規課題設定
 キーワードは「重力波」
 (3) 連星中性子星を作る親星の超新星爆発
 (4) 自転爆発からの重力波放出
- (5)磁場をシミュレーションに取り入れる

連星中性子星の形成過程

11

- Ultra stripped supernova:
 連星中性子星の形成過 程で生じる超新星爆発.
- 伴星の影響で星の外層 がはぎとられ、コアが向き 出しになっている。
- 外層が薄いので衝撃波
 が鉄コアの外を伝わる時
 間が短い

⇒課題の達成にむけて 良い練習課題になりそう.

Tauris et al. (2017)

先行研究とのセットアップの比較

	Suwa+2015 Yoshida+2017	Mueller+2018	Takiwaki+ in prep.		
親星	HOSHI (only core)	BEC & Kepler	MESA (mimic BEC)		
流体の次元	2次元軸対称	3次元(&2次元)	2次元軸対称		
重力	ニュートン	現象論的GR	現象論的GR		
ニュートリノ輸送法	2flavor-IDSA(S) Light Bulb (Y)	3flavor-FMT	3flavor-IDSA		
ニュートリノ反応	Bruenn 1985	Rampp+2002	Kotake+2018		
元素合成	Tracer particle T_9 (S) Large Network (Y)	Mesh base Flashing Method	Mesh base Small Network		
備考		PNSの対流を仮定			
先行研究よりもニュートリノ反応が凝っている. また, セルフコンシステントに計算している.					

爆発エネルギーの飽和

爆発エネルギーもNi massもだいたい落ち着いている.

	Suwa+2015 Yoshida+2017	Mueller+2018	Takiwaki+ in prep.	Light Curve Moriya+2017 Tauris+2013		
Ni mass [M_s]	0.03 (S) 0.01 (Y)	0.01	0.02	0.02 (PTF10iuv) -0.03 (sn2005ek)		
Ejecta mass [M_s]	0.1	_	0.13	0.3		
Explosion Energy [10 [^] 51 erg]	0.1	0.11	0.1	0.25		
PNS baryon mass [M_s]	1.35	1.42	1.37	—		
先行研究に比べて多くのNiを得た, sn2005ekの観測にはまだ足りない. 可能性(1):1秒以降に中性子星表面の物質が出る? 可能性(2):ニュートリノ輸送の手法のアップデートでNi増える? 可能性(3):元素合成の手法のアップデートでNi増える?						

可能性(4):親星の構造を少し変えるとNi増える?

LIAIີວ]

先行研究に比べて多くのNiを得た, sn2005ekの観測にはまだ足りない. 可能性(1):1秒以降に中性子星表面の物質が出る? 可能性(2):ニュートリノ輸送の手法のアップデートでNi増える? 可能性(3):元素合成の手法のアップデートでNi増える? 可能性(4):親星の構造を少し変えるとNi増える?

Ejectaのプロトン比率について

ライトカーブを説明するには良いセンスになっている. 我々のモデルのライトカーブはこれから計算.

小まとめ(ややこしいので)

- 重力波放出天体として連星中性子星が重要. Ultra-stripped supernovaは連星中性子星の形成過程と考えられている.
- これまでよりニュートリノ反応が凝った、セルフコンシステント なUltra-stripped supernovaeの計算を行った(ただし2D、広 い領域で1秒計算するため).
- 先行研究で足りなかったNiが少し増えた(0.02M_s). 観測されたUltra-stripped supernova (PTF10iuv)を説明するにはちょうど良いあたい. 一方, 代表的な観測例のsn2005ekを説明するには0.03M_sが必要で, それには足りない.
- 計算手法や初期条件によりNi量の見積もりは変わりそうなので、より詳細な手法や広い初期条件で調べてみる必要がある。

長期目標 超新星爆発の長時間計算をする ⇒ 放出される元素が分かる ⇒ 元素の起源 (1)長時間計算用のコード開発 (2)放出される元素の計算

- 時流に合わせた新規課題設定
 キーワードは「重力波」
 (3) 連星中性子星を作る親星の超新星爆発
 (4) 自転爆発からの重力波放出
- (5) 磁場をシミュレーションに取り入れる

長期目標
 超新星爆発の長時間計算をする
 ⇒ 放出される元素が分かる
 ⇒ 元素の起源
 (1)長時間計算用のコード開発
 (2)放出される元素の計算

- 時流に合わせた新規課題設定
 キーワードは「重力波」
 (3)中性子連星を作る親星の超新星爆発
 (4) 自転爆発からの重力波放出
- (5)磁場をシミュレーションに取り入れる

s27(WHW02) Togashi,TF WM $\Omega_0=2.0$ rad/s 2^{nd} order HLLE

ニュートリノ放射

原始中性子星が回転不安定性によりひしげ、その効果がニュートリノの放射 に現れる.これはハイパーカミオカンデで十分観測可能. (Takiwaki+2018ではニュートニアンのモデルを用いて120Hzと予想したが、 同じモデルを現象論的GRコードで計算すると200Hzになった)

重力波放射

北極, 南極方向から見た場合の重力波波形. ニュートリノの周期のおよそ2倍の周波数(400Hz)の 重力波が観測される. (これもTakiwaki+2018ではニュートニアンの計算で 240Hzと予想していため, 周波数が高くなった)

長期目標
 超新星爆発の長時間計算をする
 ⇒ 放出される元素が分かる
 ⇒ 元素の起源
 (1)長時間計算用のコード開発
 (2)放出される元素の計算

時流に合わせた新規課題設定
 キーワードは「重力波」
 (3)中性子連星を作る親星の超新星爆発
 (4)自転爆発からの重力波放出
 (5)磁場をシミュレーションに取り入れる

磁場, 乱流, 高精度計算

- ・超新星爆発からの重力波の研究には磁場と回転が重要だが、前回の研究は磁 ようでない。
- 磁場をいれるとよく乱流状態になるが、その乱流状態を解くには解像度を上げるか、高精度計算が必要になる、解像度を上げると計算時間が増えるので高精度計算をすることにする。

国立天文台の朝比奈さんが サブ課題Cからサブ課題Bへ来て 実装してくれました!

磁場、乱流、高精度計算

超新星の計算は球座標で解かれているので球座標の補正入りの5次精度スキームを実装した.

線形(1次)補間: 誤差はΔx²に比例 2次精度と呼ぶ.

これを4次関数で補間 誤差はΔx⁵に比例 5次精度と呼ぶ

球座標でもちゃんと5次精度がでている!

実際の計算(弱磁場をHLLDで解く)

設定を間違えて ニュートリノを 2フレーバーにしたら, なんと爆発してしまった. v(^_^;)v

たぶん3フレーバーでも動 くと思うが, 要テスト.

Line integrated convolutionで 磁場の向きを表示

- (1) 長時間計算用のコード開発
- コードは実装済.投稿間近.
- (2) 放出される元素の計算
- (3) 連星中性子星を作る親星の超新星爆発
- ニュートリノ反応等を凝った結果,先行研究よりも多くのNi ができた.Niの見積もりは手法に依るので精密化が必要.
- (4) 自転爆発からの重力波放出
- ニュートリノと重力波のマルチメッセンジャー観測で原始中 性子星の自転周期等が分かる.現象論的GR効果で Newtonianより周波数が高くなった.
- (5) 磁場をシミュレーションに取り入れる
- 球座標の効果を加味した5次精度のスキームを実装. HLLDでマイクロフィジクス入りの計算をテスト中.