重点課題9シンポジウム 2019年 1月9日

Overview of the Post-K processor

ポスト京システムの概要と開発進捗状況

Mitsuhisa Sato Team Leader of Architecture Development Team

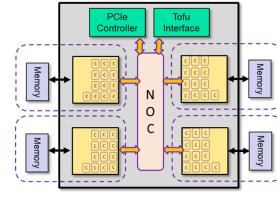
Deputy project leader, FLAGSHIP 2020 project Deputy Director, RIKEN Center for Computational Science (R-CCS)

Professor (Cooperative Graduate School Program), University of Tsukuba

FLAGSHIP2020 Project

Missions

- Building the Japanese national flagship supercomputer, post K, and
- Developing wide range of HPC applications, running on post K, in order to solve social and science issues in Japan

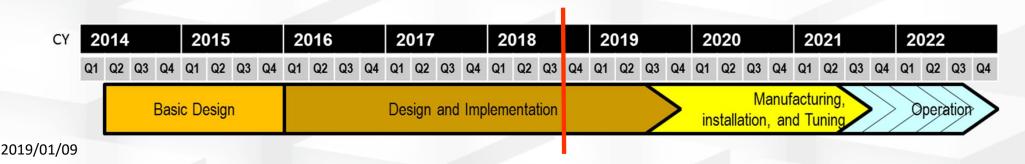

Overview of post-K architecture

Node: Manycore architecture

- Armv8-A + SVE (Scalable Vector Extension)
- SIMD Length: 512 bits
- # of Cores: 48 + (2/4 for OS) (> 2.7 TF / 48 core)
- Co-design with application developers and high memory bandwidth utilizing on-package stacked memory (HBM2) 1 TB/s B/W
- Low power : 15GF/W (dgemm)

Network: TofuD

Chip-Integrated NIC, 6D mesh/torus Interconnect



Post-K processor

Prototype board

Status and Update

- Close to end in "Design and Implementation".
- The prototype CPU powered-on and development is as scheduled
- RIKEN announced the Post-K early access program to begin around Q2/CY2020
- We are working on performance evaluation and tuning by simulators and compilers

KPIs on post-K development in FLAGSHIP 2020 project

3 KPIs (key performance indicator) were defined for post-K development

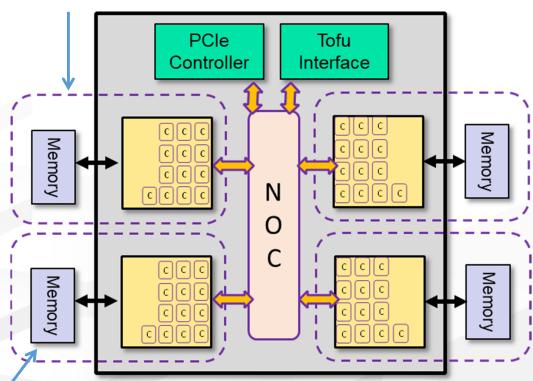
• 1. Extreme Power-Efficient System

• 30-40 MW at system level

2. Effective performance of target applications

 It is expected to exceed 100 times higher than the K computer's performance in some applications

• 3. Easy-of-use system for wide-range of users


CPU Architecture: A64FX

- Armv8.2-A (AArch64 only) + SVE (Scalable Vector Extension)
 - FP64/FP32/FP16 (https://developer.arm.com/products/architecture/a-profile/docs)
- SVE 512-bit wide SIMD
- # of Cores: 48 + (2/4 for OS)
- Co-design with application developers and high memory bandwidth utilizing on-package stacked memory: HBM2(32GiB)
- Leading-edge Si-technology (7nm FinFET), low power logic design (approx. 15 GF/W (dgemm)), and power-controlling knobs
- PCIe Gen3 16 lanes
- Peak performance
 - > 2.7 TFLOPS (>90% @ dgemm)
 - Memory B/W 1024GB/s (>80% stream)
 - Byte per Flops: approx. 0.4

- "Common" programing model will be to run each MPI process on a NUMA node (CMG) with OpenMP-MPI hybrid programming.
- ◆ 48 threads OpenMP is also supported.

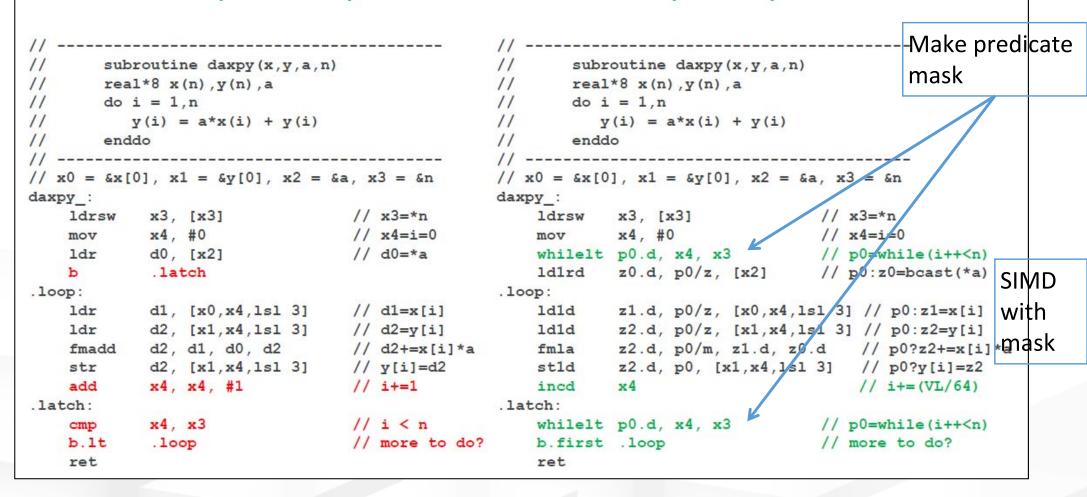
CMG(Core-Memory-Group): NUMA node 12+1 core

HBM2: 8GiB

ARM v8 Scalable Vector Extension (SVE)

- SVE is a complementary extension that does not replace NEON, and was developed specifically for vectorization of HPC scientific workloads.
- The new features and the benefits of SVE comparing to NEON

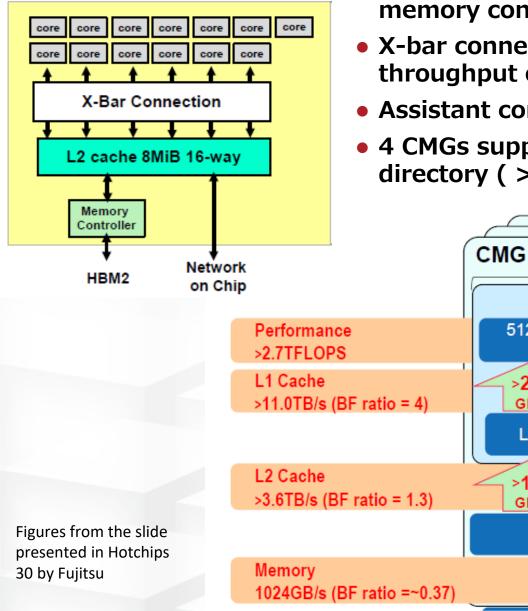
ß


- Scalable vector length (VL) : Increased parallelism while allowing implementation choice of VL
- VL agnostic (VLA) programming: Supports a programming paradigm of write-once, run-anywhere scalable vector code
- Gather-load & Scatter-store: Enables vectorization of complex data structures with non-linear access patterns
- **Per-lane predication**: Enables vectorization of complex, nested control code containing side effects and avoidance of loop heads and tails (particularly for VLA)
- Predicate-driven loop control and management: Reduces vectorization overhead relative to scalar code
- Vector partitioning and SW managed speculation: Permits vectorization of uncounted loops with data-dependent exits
- Extended integer and floating-point horizontal reductions: Allows vectorization of more types of reducible loop-carried dependencies
- Scalarized intra-vector sub-loops: Supports vectorization of loops containing complex ₂loop₉-carried dependencies

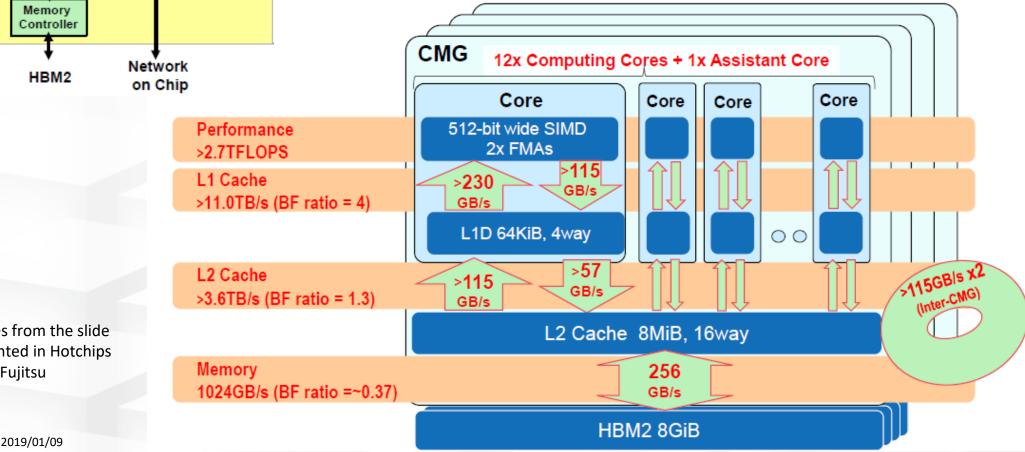
SVE example

DAXPY (SVE)

DAXPY (scalar)

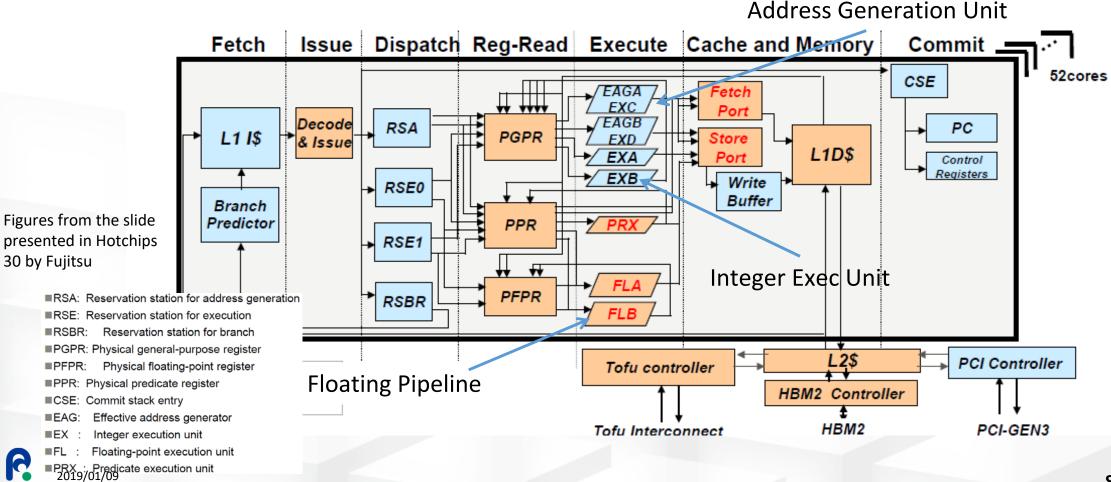


- Compact code for SVE as scalar loop
- OpenMP SIMD directive is expected to help the SVE programming


CMG (Core Memory Group)

CMG Configuration

- CMG: 13 cores (12+1) and L2 cache (8MiB 16way) and memory controller for HBM2 (8GiB)
- X-bar connection in a CMG maximize efficiency for throughput of L2 (>115 GB/s for R, >57 GB/s for W)
- Assistant core is dedicated to run OS demon, I/O, etc
- 4 CMGs support cache coherency by ccNUMA with on-chip directory (> 115GB/s x 2 for inter-CMGs)

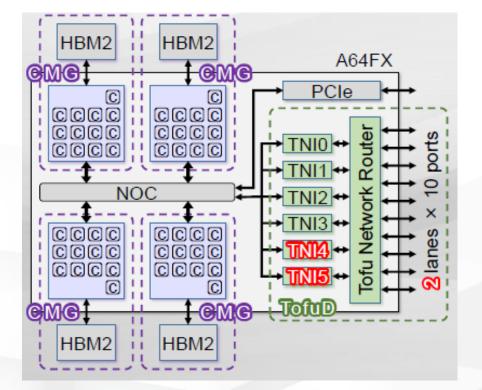

FX64A Core Pipeline

- Superscalar Arch with out-of-order, branch prediction, inherited from Fujitsu SPARC
- L1D cache: 64 KiB, 4 ways, "Combined Gather" mechanism on L1
- SIMD and predicate operations

BIKEN

- 2x 512-bit wide SIMD FMA + Predicate Operation + 4x ALU (shared w/ 2x AGEN)
- 2x 512-bit wide SIMD load or 512-bit wide SIMD store

Tofu interconnect D

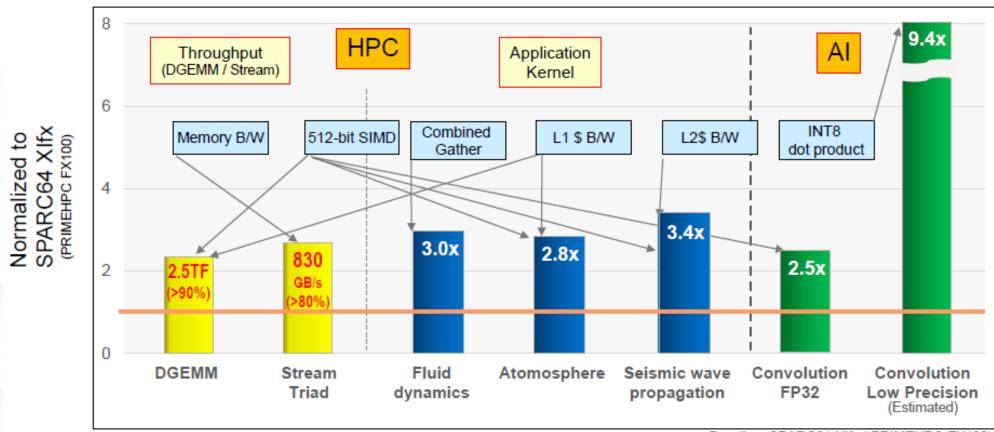


- Direct network, 6-D Mesh/Torus
- 28Gbps x 2 lanes x 10 ports (6.8GB/s / link)
- Network Interface on Chip
 - 6 TNIs: Increased TNIs (Tofu Network Interface) achieves higher injection BW & flexible comm. Patterns
 - Memory bypassing achieves low latency

	TofuD spec	
Data rate	28.05 Gbps	
Link bandwidth	6.8 GB/s	
Injection bandwidth	40.8 GB/s	
njecton bandwidth	40.0 OD/3	

Ref) K computer: Link BW=5.0GB/s, #TNI=4

	Measured
Put throughput	6.35 GB/s
PingPong latency	0.49~0.54 µs


Presented in IEEE Cluster 2018

By Fujitsu

Preliminary Performance by "real silicon"

- The prototype CPU has been powered-on and preliminary performance evaluation by the prototype CPU has been done.
- Improvement by micro architectural enhancements, 512-bit wide SIMD, HBM2 and process technology
- The results are based on the Fujitsu compiler optimized for our microarchitecture and SVE
- AI apps will be supported by SVE FP16 instructions.

Eiggrasofrom the slide presented in Hotchips 30 by Fujitsu

Baseline: SPARC64 XIfx (PRIMEHPC FX100)

Low-power Design & Power Management

- Leading-edge Si-technology (7nm FinFET)
- Low power logic design (15 GF/W @ dgemm)

A64FX provides power management function called "Power Knob"

- FL pipeline usage: FLA only, EX pipeline usage : EXA only, Frequency reduction …
- User program can change "Power Knob" for power optimization
- "Energy monitor" facility enables chip-level power monitoring and detailed power analysis of applications

• "Eco-mode" : FLA only with lower "stand-by" power for ALUs

- Reduce the power-consumption for memory intensive apps.
- Retention mode: power state for de-activation of CPU with keeping network alive
 - Large reduction of system power-consumption at idle time

KPIs on post-K development in FLAGSHIP 2020 project

3 KPIs (key performance indicator) were defined for post-K development

• 1. Extreme Power-Efficient System

- Approx. 15 GF/W (dgemm) confirmed by the prototype CPU
- Power consumption of 30 40MW (for system) is expected to be achieved

• 2. Effective performance of target applications

- It is expected to exceed 100 times higher than the K computer's performance in some applications
- 106 times faster in GENESIS (MD application), 153 times faster in NICAM+LETKF (climate simulation and data assimilation) were estimated

• 3. Easy-of-use system for wide-range of users

- Shared memory system with high-bandwidth on-package memory must make existing OpenMP-MPI program ported easily.
- No programming effort for accelerators such as GPUs is required.
- Co-design with application developers

Post-K prototype board and rack

- "Fujitsu Completes Post-K Supercomputer CPU Prototype, Begins Functionality Trials", HPCwire June 21, 2018
 - "Fujitsu has now completed the prototype CPU chip that will serve as the core of post-K, commencing functionality field trials."

Shelf: 48 CPUs (24 CMU) Rack: 8 shelves = 384 CPUs (8x48)

FUJITSU

A64FX

60mm

2019/01/09

BIKE

60mm

13

Advances from K computer

	K computer	Post-K	ratio	
# core	8	48		\sub Si Tech
Si tech. (nm)	45	7		
Core perf. (GFLOPS)	16	56~	3.5	
Chip(node) perf. (TFLOPS)	0.128	2.7~	21	CMG&Si Tech
Memory BW (GB/s)	64	1024		
B/F (Bytes/FLOP)	0.5	0.4		
#node / rack	96	384	4	
Rack perf. (TFLOPS)	12.3	1036.8	84	
#node/system	82,944	???]
System perf.(PFLOPS)	10.6	???		

- SVE increases core performance
- Silicon tech. and scalable architecture (CMG) to increase node performance
- HBM enables high bandwidth

Global Competitiveness

- Post-K has good power-performance as a "general-purpose" processor.
- In term with arithmetic performance and memory bandwidth, interconnect bandwidth, the post-K system is expected to be competitive to other world-class HPC systems.

	Peak Flops (double precision) TFlops	Memory bandwidth (STREAM triad) GB/sec	fficiency in Linpack	Power- Performance GFlops/Watt	Interconnect Performance GB/sec
Post-K/A64fx	> 2.7	840	> 85 %	15.0	40.8
Oakforest-PACS / Xeon Phi KNL	3.0464	490	54.4 %	4.9	12.5 ^{※3}
Niagara∕ Xeon Skylake ^{※1}	1.536	104.5	66.7 %	4.5	6.3 ^{※3}
Summit / GPU Volta GV100 ^{※ 2}	7.8	855	65.2 %	13.8	4.2 ^{※3}
DGX-1 SaturnV Volta / GPU Tesla V100 ^{※ 2}	7.8	855	58.8 %	15.1	6.3 ^{※3}

×1 one socket performance estimated by open information on two-socket performance of Skylake (Xeon Gold 6148 20C 2.4GHz)

※ 2 Peak performance of one socket connected with NVLINK. Memory bandwidth by one socket GPU.

※ 3 Network controller is not integrated on chip. Attached Infiniband network of 100Gbps (12.5GB/sec) For Niagara, one 100Gbps Infiniband for two sockets. For Summit, two 100Gbps Infiniband for 6 sockets. For DGX-1 SaturnV Volta, four 100Gbps Infiniband for 8 sockets GPU. For all systems, network performance indicated for one socket.

"PostK" performance evaluation environment

- RIKEN is constructing "PostK" performance evaluation environment for application programmers to evaluate and estimate the performance of their applications on "PostK" and for performance turning for "postK".
- The "PostK" performance evaluation environment is available on the servers installed in RIKEN. The environment includes the following tools and servers:
 - A small-scale FX100 system and "postK" performance estimation tool:

The estimation tool gives the performance estimation of multithreaded programs on "postK" from the profile data taken on FX100.

• "PostK" processor simulator based on GEM-5:

"PostK" processor simulator will give a detail performance results including estimated executing time, cache-miss, the number of instruction executed in O3. The user can understand how the compiled code for SVE is executed on "postK" processor for optimization. (Arm released GEM-5 beta0 of SVE) FP16 SVE will be available soon.

- Compilers for "PostK" processor
 - Fujitsu Compilers : Fortran, C, C++. Fully-tuning for "postK" architecture.
 - Arm Compiler : LLVM-based compiler to generate code forArmv8-A + SV. C,C++ by Clang, Fortran by Flang
- SVE emulator on Arm server, developed by Arm for fast SVE code execution.
- Arm Severs (Planned 4Q/2018)

2019/01/09

16

Schedule on Development and Porting Support

NOW					
	СҮ2017	CY2018	СҮ2019	CY2020	CY2021
	Design a	nd Implementatio	on Manufact	uring Installatio and Tunir	
Specification	Armv8-A + SVE Ov	≁ ↔… verview Detailed	hardware info.		
Optimization Guidebook		<mark>≁ Publishin</mark>	ng Incrementally		
RIKEN Performance	Performance estimation	on tool using FX100)	→	
Evaluation Environment	RIKEN Simulator			→	
Early Access Program				- \$	

- CY2018. Q2, Optimization guidebook is incrementally published
- CY2020. Q2, Early access program starts
- CY2021. Q1/Q2, General operation starts

Note: Fujitsu will reveal features of Post-K CPU at Hot Chips 2018.

• Takeo Yoshida, "Fujitsu's HPC processor for the Post-K computer," IEEE Hot Chips: A Symposium on High Performance Chips, San Jose, August 21, 2018.

Post-K CPU New Innovations: Summary

1. Ultra high bandwidth using on-package memory & matching CPU core

- Recent studies show that majority of apps are memory bound, some compute bound but can use lower precision e.g. FP16
- Comparison w/mainstream CPU: much faster FPU, almost order magnitude faster memory BW, and ultra high performance accordingly
- Memory controller to sustain massive on package memory (OPM) BW: difficult for coherent memory CPU, first CPU in the world to support OPM

2. Very Green e.g. extreme power efficiency

- Power optimized design, clock gating & power knob, efficient cooling
- Power efficiency much better than CPUs, comparable to GPU systems

3. Arm Global Ecosystem & SVE contribution

- Annual processor production: x86 3-400mil, ARM 21bil, (2~3 bil high end)
- Rapid upbringing HPC&IDC Ecosystem (e.g. Cavium, HPE, Sandia, Bristol,…)
- SVE(Scalable Vector Extension) -> Arm-Fujitsu co-design, future global std.

4. High Performance on Society5.0 apps including AI

- Next gen AI/ML requires massive speedup => high perf chips + HPC massive scalability across chips
- Post-K processor: support for AI/ML acceleration e.g. Int8/FP16+fast memory for GPU-class convolution, fast interconnect for massive scaling
- Top performance in AI as well as other Society 5.0 apps