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宇宙物理学における流体シミュレーション法

• SPH法 (平滑化粒子法) • AMR法 (最適化格子法)

• 高密度領域で自然に高解像度

• 人工的な表面張力、不連続面
が苦手

• 解像度が不連続に変わる
• ガリレイ不変ではない



移動格子法流体シミュレーション

• ムービングメッシュ法

• ボロノイ格子

Springel (2010)



移動格子法流体シミュレーション

• Arepo code (Springel 2010)

• 宇宙論的銀河形成シミュレーション

１３０億年前 １１０億年前 ８０億年前 現在

１
億
５
千
万
光
年

６
万
光
年



クランピー銀河について

• 円盤銀河の形成段階に相当すると考えられている銀河



Clumpy galaxies

• Observed in the high-z universe （z > 1）

– clump clusters / chain galaxies

• `Clumpy’ galaxies are formation stages of disc galaxies.

– `Giant clumps’ (~ 109 M


at the largest)

– Clumpy galaxies account for ~ 30-50 % in z=1-3

• Tadaki+14, Livermore+15, Guo+15

with HST     Guo et al. (2014) Elmegreen et al. (2013)

～109 yr

in the high-z in the local universe

?



Clumpy fraction and cosmic SFR

Cosmic SFRD

Clumpy frac.

Shibuya et al. (2016)
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Clump formation and star formation

• What yet to understand are:

• What drives giant-clump formation?

• Gravitational instability (GI)

• Cosmological gas accretion

• Galactic mergers

• What suppress giant-clump formation? (why clumps disappear?)

• Disc stabilization by gas consumption and/or heating

• Growth of a massive bulge

• Cessation of galactic mergers 



Spiral-arm instability: 
giant clump formation via 

fragmentation of a galactic spiral arm

Beyond Toomre’s Q 

MNRAS 474, 3466 (2018)



Spiral or Clumpy?

• Clumpy galaxies

• Giant clumps

• Gas-rich (fgas>30%)

• Toomre instability?

Guo et al. (2014)

Spiral-arm fragmentation?

Law et al. (2012)
Elmegreen& Elmegreen (2014)

Spiral galaxies emerge at z<2-3 (Elmegeen+14)



Spiral or Clumpy?

• Isolated disc galaxy simulations

• Gas + stellar discs

• Isothermal gas (no star formation, no feedback)

• Moving-mesh code: Arepo

𝒇𝒈𝒂𝒔 = 𝟎. 𝟐 𝒇𝒈𝒂𝒔 = 𝟎. 𝟐𝟓
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A dispersion relation for a single-component model

• One can obtain the dispersion relation for the perturbations,

• The Poisson equation for the perturbations is 

𝐾 : Bessel function

𝐿 : Struve function

𝑓(𝑘𝑊) 𝑊 : half width of arm



A dispersion relation for a single-component model

• One can obtain the dispersion relation for the perturbations,

(cf. Takahashi, Tsukamoto & Inutsuka 2016)

• This can be transformed as

• When 𝜔2 < 0, the spiral is unstable.

• Considering this in the boundary case 𝜔2 = 0, the new instability parameter and 

its criterion can be defined as   

Coriolis forcePressure Self-gravity



A dispersion relation for a two-component model

• A galaxy usually has gas and stars. The dispersion relations of gas and stars are,

• Because gas and stars interact only through gravity, they are connected in the 

Poisson eq.,

• Then, one can obtain the two-component dispersion relation, 

• Finally, I obtain the new instability condition for 2-comp. models,

gas:

stars:

2
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ここまでのまとめ

• 銀河の渦状腕の分裂は、線形摂動解析で非常にうまく記述できる。

• 解析的に分裂不安定の物理条件を導出することに成功。

• シミュレーションの結果に適用し、渦状腕の分裂を予測することができる。

➡今後実際の銀河の観測データに適用

• 渦状腕の分裂は、クランプの形成メカニズムの候補になりうる。



軸対称磁場による銀河渦状腕
の不安定化とクランプ形成

井上茂樹

吉田直紀

(Kavli IPMU / U. Tokyo)

MNRAS 474, 3466 (2018)

arXiv:1807.02988



How does magnetic field 
affect spiral arm?

Does magnetic field stabilize or 
destabilize the arm?

If it destabilizes, it may drive clump 
formation with high SFR.



Toroidal magnetic fields in a disc galaxy

 Galactic B-fields are approximately toroidal and/or following spiral arms.

 𝐵𝜃～1 𝜇G around the sun (e.g. Inoue & Tabara 1981, Mouschovias 1983).

Han (2017)
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Toroidal magnetic fields in a disc galaxy

B

𝑅

 Galactic B-fields are approximately toroidal and/or following spiral arms.

 Radial perturbations
 The magnetic pressure work against the perturbations.

 Azimuthal perturbations
 The B-fields do nothing in φ-direction..

 But, work against Coriolis force.

Coriolis force

Azimuthal B-fields can destabilize azimuthal 
perturbations by cancelling Coriolis force.  

Toroidal B-fields can stabilize radial 
perturbations by magnetic pressure.  

𝜙

cf. Elmegreen (1987, 1991), Kim & Ostriker (2001)



Ideal MHD simulations
at t=400 Myr

Non-magnetic Weakly magnetic

Moderately magnetic Strongly magnetic



Set-up for the linear perturbation theory

 Now considering…
 Gravitational instability for azimuthal perturbations on an axisymmetric

spiral (ring).

continuity:

R

𝜙

perturbations

𝛿𝐴 exp 𝑖 𝑘𝑅𝜙 − 𝜔𝑡

spiral arm

x

y Assuming:

• The spiral has a rigid rotation since self-

gravitating. 
Ω = −𝐵

• Replace surface density Σ with line-mass

Υ = 1.4𝑊Σ (Gaussian).

R- and φ-momenta:

(ideal) Faraday's law:



Set-up for the linear perturbation theory

 Now considering…
 Gravitational instability for azimuthal perturbations on an axisymmetric

spiral (ring).

R

𝜙

perturbations

𝛿𝐴 exp 𝑖 𝑘𝑅𝜙 − 𝜔𝑡

spiral arm

x

y Assuming:

• The spiral has a rigid rotation since self-

gravitating. 
Ω = −𝐵

• Replace surface density Σ with line-mass

Υ = 1.4𝑊Σ (Gaussian).

continuity:

R-momentum:

φ-momentum:



The dispersion relation of MHD

 One can obtain the dispersion relation for the perturbations,

Coriolis force

Thermal 
pressure

Self-gravity

Magnetics

Stable

Unstable

Large-scale Small-scale

𝜔2 = 0



The dispersion relation of MHD

 One can obtain the dispersion relation for the perturbations,

Coriolis force

Thermal 
pressure

Self-gravity

Magnetics

Stable

Unstable

Large-scale Small-scale

𝜔2 = 0

Weak magnetic fields



The dispersion relation of MHD

 One can obtain the dispersion relation for the perturbations,

Coriolis force

Thermal 
pressure

Self-gravity

Magnetics

Stable

Unstable

𝜔2 = 0

Growth rate
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Toomre Instability (TI)
(e.g. Dekel et al. 2009)

v.s.

Spiral-Arm Instability (SAI)
(Inoue & Yoshida 2018a, 2018b)

For low-z clumpy galaxies



Gravitational instabil i ty (GI) of discs

• GI can form structures in a disc.

Elis 2-27 proto-planetary disc

Perez et al. (2016)

High-z disc galaxies at z~1-3 

Guo et al. (2014)

Proto-planetary disc simulation

Tsukamoto et al. (2013)

NGC 

1232©NASA

Spiral arms

Proto-planets/

Giant clumps

Toomre instbility

Toomre instability!!

Really??



TI vs SAI

• Spiral-Arm Instability

Disc formation

Spiral arm formation

Giant clump formation

• Toomre Instability

Disc formation

Giant clump formation

Toomre instability

𝑄 < 1

Toomre instability and/or 

swing amplification

Spiral-Arm Instability

𝑆 < 1
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TI vs SAI

• Spiral-Arm Instability

• 1D collapse

•𝑀𝑐𝑙~Σ𝑊𝜆

• Toomre Instability

• 2D collapse

•𝑀𝑐𝑙~𝜋Σ Τ𝜆 2 2

When 𝑄 ≅ 1, When 𝑆 ≅ 1,



• From our analysis, we can obtain scaling relations of properties of giant clumps.

Scaling relations of high-z clumps

expected scaling relation: 𝑅cl ∝
𝜎cl
𝑉
𝑅d

1.3
Spiral-arm instability

expected scaling relation:
𝑅cl ∝

𝜎cl
𝑉
𝑅d

Toomre instability

𝑅cl: clump radius, 𝜎cl:vel. disp. with in clump, 𝑅d: disc radius, 𝑉: disc rot. vel.



Scaling relations of high-z clumps

• Neither model is rejected by the observations.

redshift z~0

Data from Fisher+17: DYNAMO  



• From our analysis, we can obtain scaling relations of properties of giant clumps.

Scaling relations of high-z clumps

expected scaling relation:

Spiral-arm instability

expected scaling relation:

Toomre instability

𝑅cl: clump radius, 𝜎cl:vel. disp. with in clump, 𝑅d: disc radius, 𝑉: disc rot. vel.

𝜂 ≈ 𝑓𝑔 : gas fraction including DM



Scaling relations of high-z clumps

• Spiral-Arm Instability• Toomre Instability

redshift z=0-1redshift z=0-1

Shibuya & SI (in prep.) 

Data from Shibuya+16: HST @ z=0-1  

redshift z=0-1

• Our SAI model appears better consistent with 

the observations of Τ𝑀𝑐𝑙 𝑀𝑑 ~10% clumps.



Transit ion of the clump formation mechanisms
ti
m

e

z=0

high z

z~2-3

z~1

The onset of spiral galaxies

Low+12 @ z=2.1

Elmegreen+14 @ z~1.8

Yuan+17 @ z>2.5

Spiral-arm instability: 𝑆 < 1

Toomre instability: Q < 1
Possibly non-linear: Q > 2 − 3

(Inoue+ 2016)



Clumpy fraction and cosmic SFR

• Shibuya et al. (2016)
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Cosmic SFRD
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Clumpy fraction and cosmic SFR

• Shibuya et al. (2016)

Onset of spiral galaxies

Spiral-arm instability: 𝑆 < 1

Toomre instability: Q < 1

Clumpy fractions

Cosmic SFRD



• Our SAI model appears better consistent with the 

low-z observations.

• The TI model cannot reproduce the scaling relation of the observations 

despite that the TI model relays on fewer assumptions than our SAI 

model.

• There could be transition of clump formation mechanisms

• @ z=2~1, from Toomre instability to spiral-arm instability 

Summary


