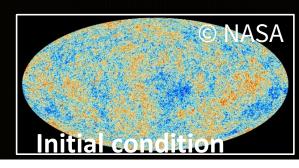
京による構造形成シミュレーション

石山智明

千葉大学 ポスト京重点課題9「宇宙の基本法則と進化の解明」

1. 最小スケールからの階層的 構造形成とサブハロー

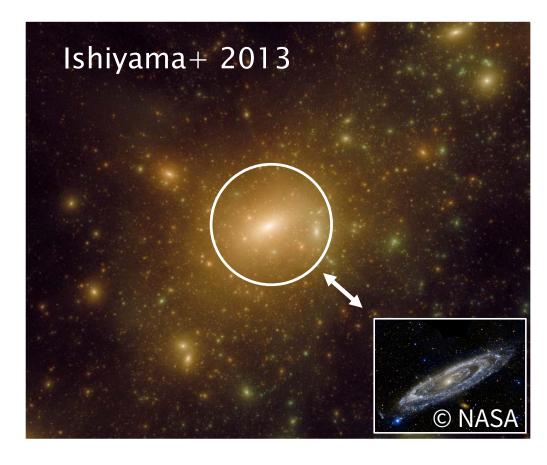

2. 大規模シミュレーション データの公開

最小スケールからの階層的構造 形成とサブハロー

- スーパーコンピュータによる大規模構造形成 シミュレーションを用い、ダークマターハロー の暗黒物質位相空間分布を従来よりも 良い精度で明らかにし、ダークマター検出 のための手がかりを得る
 - 間接検出実験
 - 直接検出実験
 - 構造形成理論

宇宙論的構造形成シミュレーション(ダークマターのみ)

© 4D2U @ NAOJ

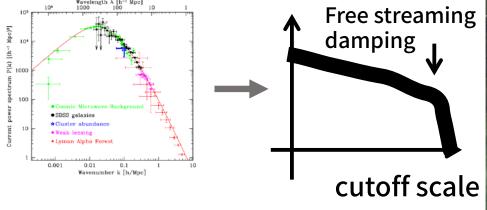

360 degree panoramic video for head mounted display is available on http://4d2u.nao.ac.jp/English/

ハローの構造

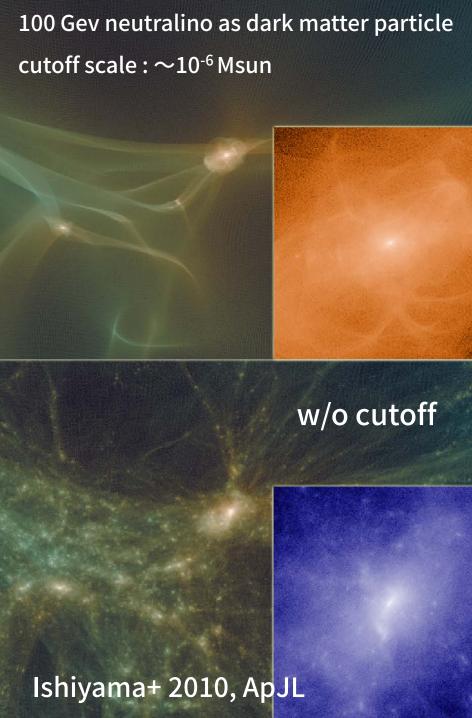
- Central Cusp
 - Einasto profile
 - NFW profile

$$\rho(r) = \frac{\rho_{\rm s}}{(r/r_{\rm s})[1 + (r/r_{\rm s})]^2}$$

- Numerous subhalo
 - $dn/dm \sim m^{-(1.8\sim2)}$
- Triaxial
- Non Universality
 - Weak dependence on the halo mass
 - halo to halo variation

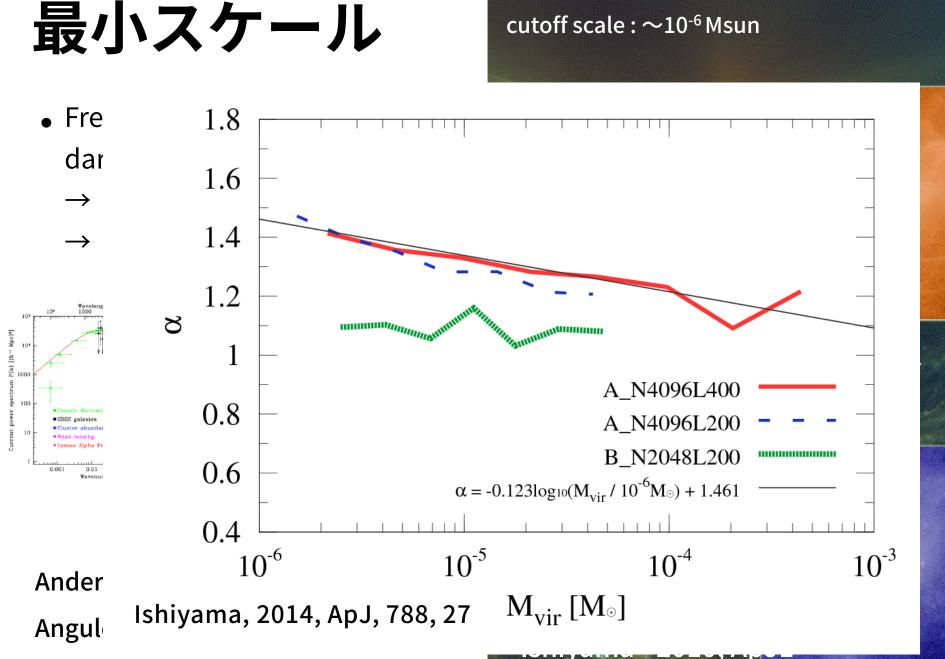

Impact on the galaxy formation,

Dark matter detection experiment


従来のシミュレーションは主に比較的大きいハロー (> 10¹⁰ Msun) を対象としてきた

最小スケール

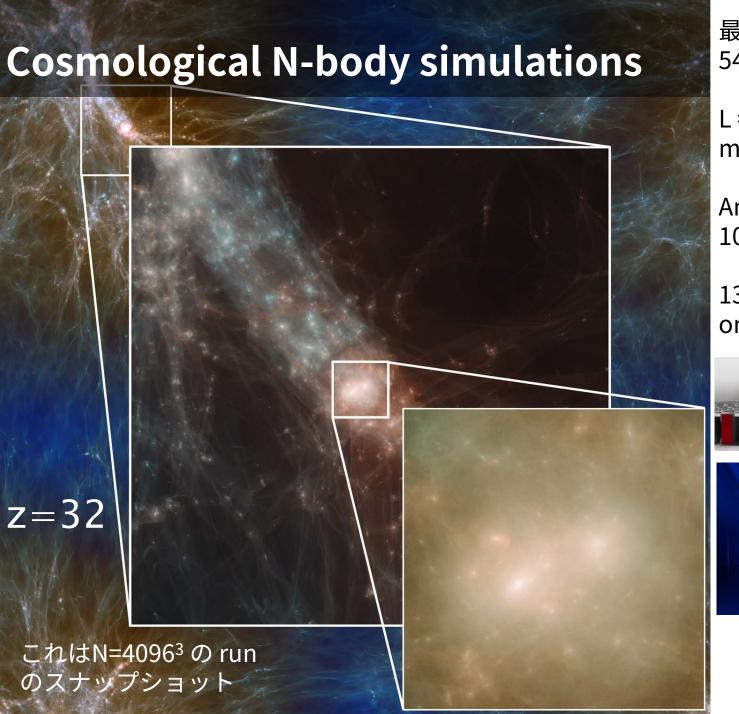
- Free streaming motion of dark matter particle
 - → cutoff on power spectrum
 - → Steeper cusps emerge



Anderhalden and Diemand 2013, Angulo+ 2016 give similar results

100 Gev neutralino as dark matter particle

cutoff scale: ~10⁻⁶ Msun



本研究の目的

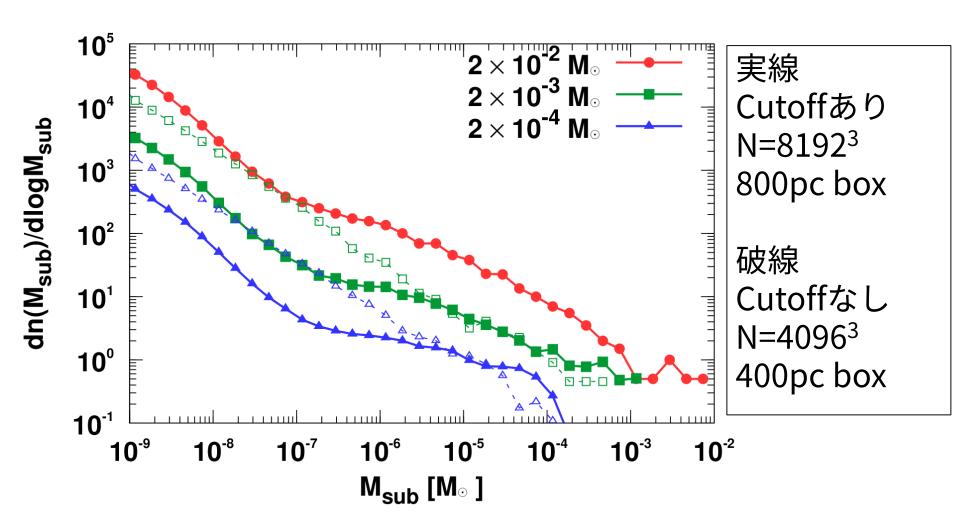
- ハローの構造は質量スケールによって大きく異なり、 最小スケール付近では大スケールに比べ鋭い中心カスプをもつ
- サブハローの数は典型的には質量の -1 乗程度に比例

小スケールハローのハロー内での構造と数は、銀河系ハローのダークマター位相空間分布に多大な影響を及ぼし得る

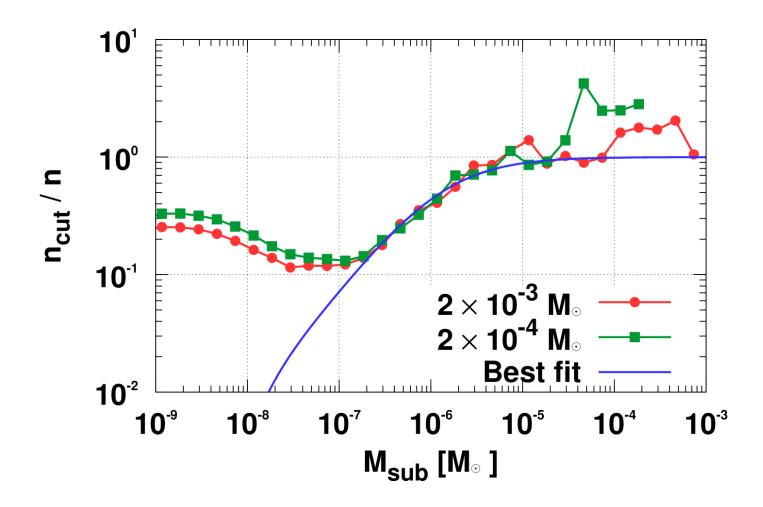
- 銀河系サイズのハロー (10^{12} Msun)と、最小のハロー (10^{-6} Msun) を同時にシミュレーションすることは不可能
 - 大スケールの高分解能シミュレーション (Ishiyama+ 2016)と 小スケールのものに基づいて、中間スケールをモデル化する
- 究極目標:銀河系内のサブハロー質量関数、構造を全スケール (質量で20桁程度)にわたって解き明かす

最大 N = 8192³ = 549,755,813,888

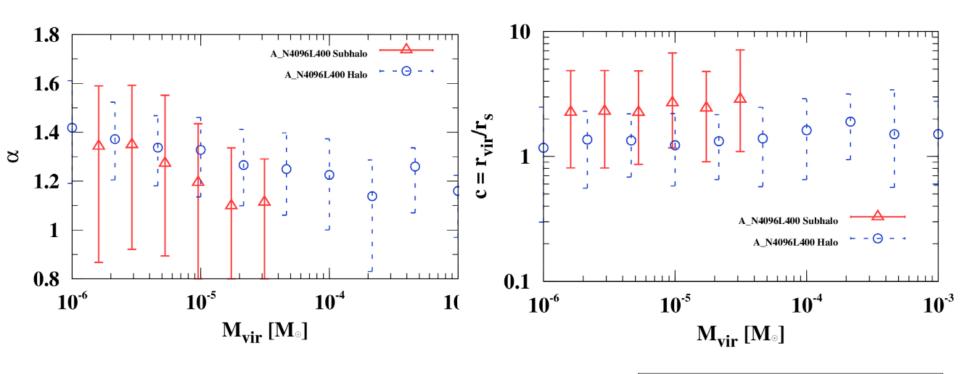
L = 800 pcm = 3.4 x 10^{-11} Msun


Analyze $10^{-6} \sim 10^{-2} \, \text{Msun halos}$

131,072 CPU cores on K computer


Stacked subhalo mass function (z=32)

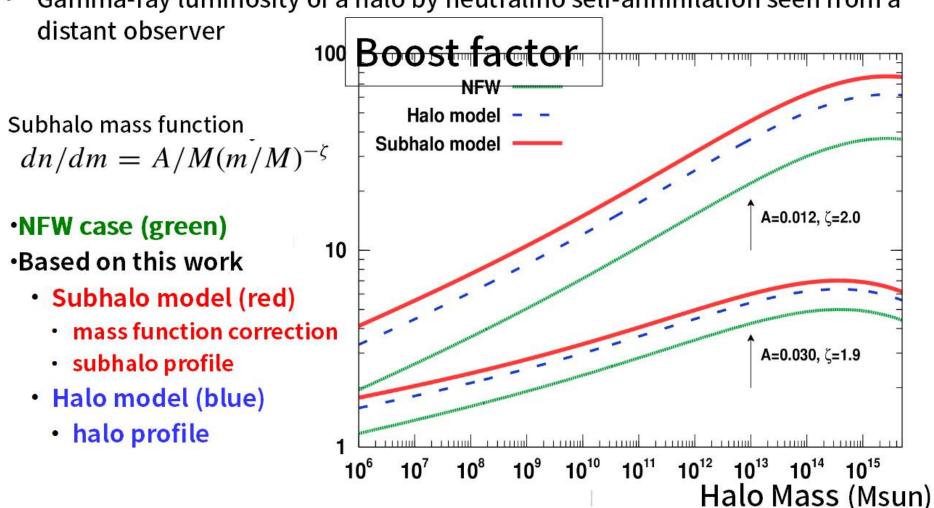
各質量範囲のハローでスタックしている


Correction function

cutoff ありなしの mass function の比

• Best fit を、 z=0 の銀河スケールハローの高分解能シミュレーションで得られた subhalo mass function とかけあわせる

サブハローの構造 (カットオフあり、 z=32)

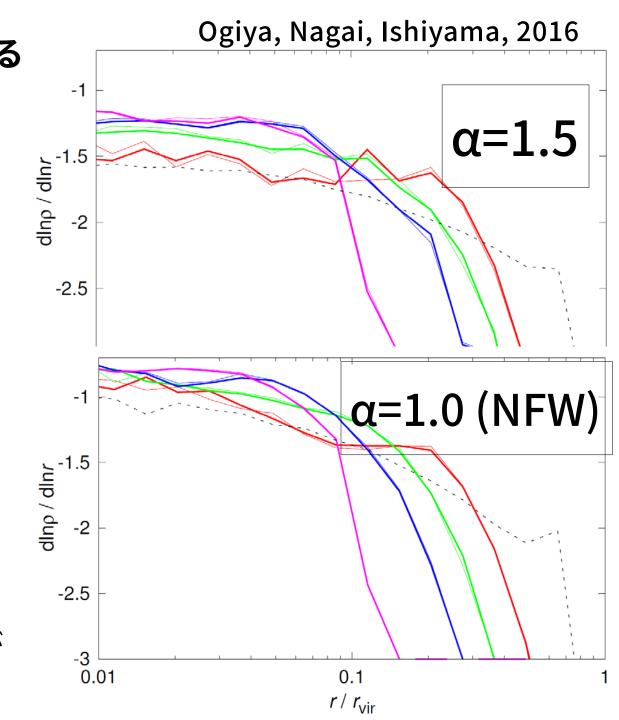

- ・ コンセントレーションは 1.5 倍程度となっている。
- 中心の冪αは、10⁻⁵ Msun 付近から減少
 - 分布も広がっている
 - ハローより早く NFW に漸近?

Cutoff あり N=4096³ 400pc box

$$\rho(r) = \frac{\rho_0}{(r/r_{\rm s})^{\alpha} (1 + r/r_{\rm s})^{(3-\alpha)}}$$

Impact on indirect detection

Gamma-ray luminosity of a halo by neutralino self-annihilation seen from a



The steeper inner cusps of halos near the free streaming scale enhance the annihilation luminosity of a Milky Way sized halo between 42 to 107% (12 to 67)

ハロー質量に依存する カスプの起源

- concentration の小さい 原始ハロー同士の合体→カスプの冪が -1 程度に 漸近
- 初期により鋭いカスプ→合体による冪の変化がより大きい

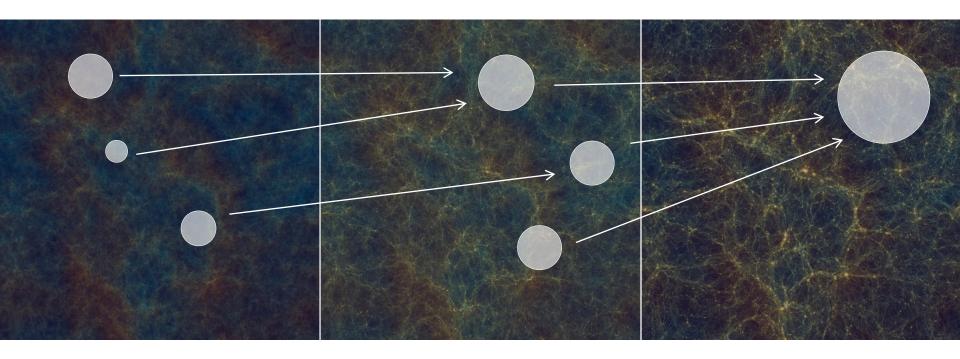
concentration (質量)が 成長したハローでは冪が 保存される傾向にある

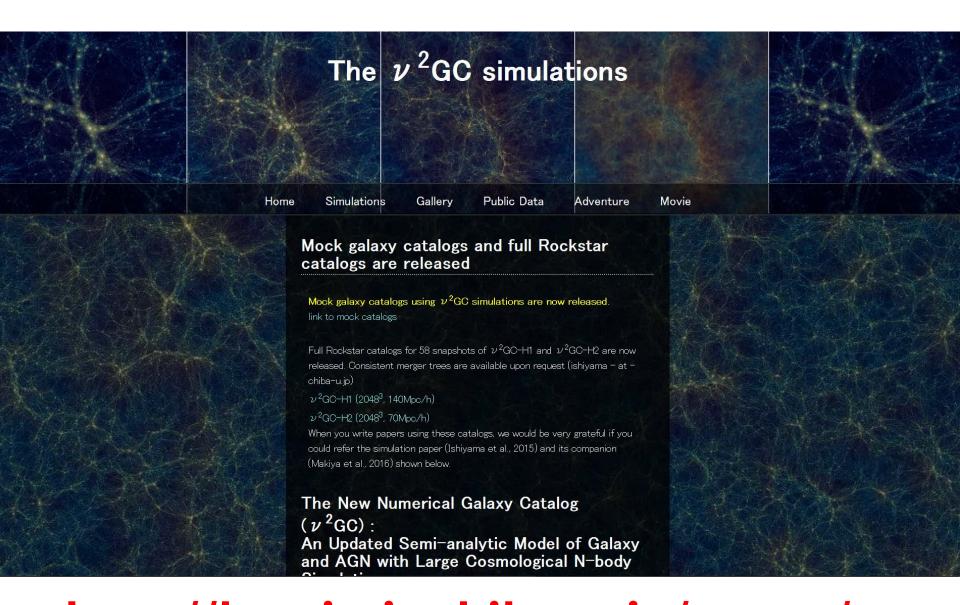
まとめと今後の展望

- 大規模高分解能シミュレーションに基づき、最小スケール付近の ハローの中に存在するサブハローの分布、構造を調べた
- これらサブハローの影響を正しく評価すると、銀河系ハローの ダークマター対消滅ガンマ線シグナルを古典的な見積りに比べ 最大倍程度増大させ得る

今後の展望:

シミュレーションとハローの進化モデルを組み合わせ、太陽系近傍の ダークマター位相空間分布を見積り、直接検出へのインパクト等を 評価する


大規模シミュレーションデータの公開


- 限られた redshift でのみデータを公開していたのを、S, H1, H2 については 全 redshift で以下を公開した (http://hpc.imit.chiba-u.jp/~nngc/)
 - Rockstar による halo/subhalo カタログ
 - Consistent tree による merger tree
- 準解析的銀河形成モデルによって生成した銀河カタログも公開
 - http://cdsarc.u-strasbg.fr/cgi-bin/VizieR?-source=J/PASJ/68/25

Name	N	$L(h^{-1}\mathrm{Mpc})$	$m(h^{-1}M_{\odot})$	$\varepsilon(h^{-1}{\rm kpc})$	$M_{\rm min}(h^{-1}M_{\odot})$
$ u^2$ GC-L	$8192^3 = 549,755,813,888$	1120.0	2.20×10^{8}	4.27	8.79×10^{9}
$ u^2$ GC-M	$4096^3 = 68,719,476,736$	560.0	2.20×10^{8}	4.27	8.79×10^{9}
$ u^2$ GC-S	$2048^3 = 8,589,934,592$	280.0	2.20×10^{8}	4.27	8.79×10^{9}
$ u^2$ GC-H1	$2048^3 = 8,589,934,592$	140.0	2.75×10^7	2.14	1.10×10^{9}
$ u^2$ GC-H2	$2048^3 = 8,589,934,592$	70.0	3.44×10^{6}	1.07	1.37×10^8
$ u^2$ GC-H3	$4096^3 = 68,719,476,736$	140.0	3.44×10^{6}	1.07	1.37×10^{8}

Merger tree

- 各 redshifts で検出した halo/subhalo を時間方向につなげたもの
- 各ハローの合体形成史を数値化している
- データサイズが元シミュレーションの 100~1000 分の1
 - データの再利用性が極めて高い

http://hpc.imit.chiba-u.jp/~nngc/

Index of / nngc/Data/n2gc-h1

[ICO]	<u>Name</u>	Last modified	<u>Size</u>	<u>Description</u>			
[PARENTDIR] Parent Directory -							
	n2gc-h1.md5sum	2016-10-12 11:31	3.3K				
	n2gc-h1.redshift	2016-10-12 11:31	637				
	n2gc-h1 1.rockstar.bz2	2016-10-12 11:31	32K				
	n2gc-h1 2.rockstar.bz2	2016-10-12 11:31	1.5M				
	n2gc-h1 3.rockstar.bz2	2016-10-12 11:31	32M				
	n2gc-h1 4.rockstar.bz2	2016-10-12 11:31	49M				
	n2gc-h1 5.rockstar.bz2	2016-10-12 11:31	74M				
	n2gc-h1 6.rockstar.bz2	2016-10-12 11:31	105M				
	n2gc=h1 7.rockstar.bz2	2016-10-12 11:31	145M				
	n2gc=h1 8.rockstar.bz2	2016-10-12 11:31	195M				
	n2gc-h1 9.rockstar.bz2						
	n2gc-h1 10.rockstar.bz2						
	n2gc-h1 11.rockstar.bz2	2016-10-12 11:31	405M				
	n2gc-h1 12.rockstar.bz2	2016-10-12 11:31	493M				
	n2gc-h1 13.rockstar.bz2						
	n2gc-h1 14.rockstar.bz2						
	n2gc-h1 15.rockstar.bz2		911M				
	n2gc-h1 16.rockstar.bz2	2016-10-12 11:31	1.0G				
	n2gc-h1 17.rockstar.bz2	2016-10-12 11:31	1.2G				
	n2gc-h1 18.rockstar.bz2	2016-10-12 11:31	1.3G				
	n2go-h1 19.rockstar.bz2	_	1.4G				
	n2gc-h1 20.rockstar.bz2	_	1.5G				
	n2go-h1 21.rockstar.bz2		1.6G				
	n2go-h1 22.rockstar.bz2		1.7G				
	n2go-h1 23.rockstar.bz2	2016-10-12 11:31	1.7G				
	n2go-h1 24.rockstar.bz2		1.8G				
	n2gc-h1 25.rockstar.bz2		1.9G				
	n2gc-h1 26.rockstar.bz2		1.9G				
	n2 c-h1 27 rockstar.bz/		1. <mark>9</mark> G	mit			
		12 0 11 F10-12 1 (31	2. G				
	n2go=h1 29.ro_kstar.bz2	<u>_</u> 2016−10 -1 2 11:31	2.0G				

.chiba-u.jp/~nngc/