QCDの有限温度相転移とトポロジー

ー サ ブ 課題A「QCD 相転移」 ー

2017.5.31 重点課題9研究報告会

QCD 有限温度相転移 contributor

- 青木慎也 京大基研
- 青木保道 KEK/理研
- Guido Cossu
 Edinburgh
- 橋本省二 KEK
- 深谷英則
 大阪大学
- ・鈴木渓 KEK

• ...

ここで紹介するTopology関係の全ての結果は Preliminary です

QCD 有限温度相転移

QCD 有限温度相転移

・純理論的な興味

- QCDの理解
 - カイラル対称性とその自発的破れ

↑ クォーク質量を変えてプローブ

- ・非物理点(クォーク質量)の情報
 - ・物理点の理解の強固な補強
 - ・究極的には相図の完成
- ・この課題で追求する!

・最も近い理想的な状況: Nf=2
・相転移とトポロジー
 密接に関係!
 トポロジーを詳しく調べる
• 波及効果: axion
➡ 宇宙と物質の進化
・まずはNf=2を理解し
・Nf=2+1 へつなげる

現在でも: Columbia Plot = 大方の人の理解 || 期待

[original Columbia plot: Brown et al 1990]

N_f=2+1相図

- ・ 連続極限で分かっていること
 - Nf=0: 一次転移
 - 右上隅はよく分かっている
 - N_f=2+1 物理点: cross-over
 - staggered (Wuppertal 2006)
 - 他の正則化でも反証なし
 - ・厳密なカイラル対称性を持つ
 アプローチでは未踏
- その他の領域は不確定

QCD 有限温度相転移の理論: N_f=2+1 Lattice

- ・相境界(μ=0)の μ>0 への伸び方を調べる→(T,μ)臨界終点の研究へつなげる
- 大変重要/有用である!

$N_{f}=2 \ge N_{f}=2+1$

- 遠い?
 - $m_s \sim 100 \text{ MeV} \rightarrow \infty$
 - T=0 では s のあるなしは微細効果
- ・しかし
 - O(4) scaling $\rightarrow U(1)_A @$ Wilson
 - ・ 厳密な格子カイラル対称性
 - ➡U(1)_A回復を示唆[JLQCD16]
 - →一次転移の可能性[Pisarski&Wilczek]
- ・現時点の物理点の知識はそのようなベー スに立ってない

- 0 ≤ m_f < m_c : 一次転移
- 一つの可能性として: N_f=3の一次転移領域と繋がる
- 物理点への影響も考えられる

U(1)_Aの役割とトポロジー

- ・QCDの大局的対称性: U(N_f)_L x U(N_f)_R @ m_f→0
- 高温 T>T_c: → SU(N_f)_V x U(1)_V x SU(N_f)_A x U(1)_A ?
 - ・SU(N_f)_Aは回復、U(1)_Aは?
 - それぞれ秩序パラメタにから確認できるはず

トポロジーにシグナルが現れるはず

$$SU(N_{f})_{-\langle \overline{q}q \rangle}$$
 予想: $\chi_{t} = 0$ for $0 < m_{f} < m_{c}$)? [JLQCD16]
 N_{T} [S.Aoki, Fukaya, Taniguchi (2012)]
電荷の感受率 $\chi_{t} = \frac{\langle Q_{t}^{z} \rangle}{V}$

N_f=2 オーバーラップフェルミオンによる解析

- ・DWFアンサンブル→オーバーラップに再重み付け(reweighting)
 - ・ Möbius DWF: ほぼ厳密なカイラル対称性: m_{res}≪Λ_{QCD}
 - ・オーバーラップ: 厳密なカイラル対称性
- Q_tの測定として
 - 電荷密度(クローバー)の積分 (Wilson Flow 後)
 - ・Overlap Index: ディラック演算子の固有値
- ・reweighting あり/なしと電荷のはかり方2種類で都合4つの χ_t 値
- ・現在のとりくみ: 1/a = 2.6 GeV *** PRELIMINARY ***
 - ・より細密格子で DW → Overlap 対応がさらに改善される

$\chi_t(m_f)$ for N_f=2 T=220 MeV

(reweighting 無しのオーバラップ 固有値は病的に振る舞う) [JLQCD: Tomiya, S.Aoki, Cossu, Fukaya, Hashimoto, Kaneko, Noaki(2016)]

m=0.005 history and histogram

χ_t(m_f) T=~220 MeV 付近のカットオフ依存性

- 1/a=1.7 GeV → 2.6 GeV: ~コンシステント[赤に注目]
 - ・青(gluonic)は赤(index) に近づく
- m=10 MeV あたりに相境界?

$\chi_t(m_f)~\text{for N_f=2}~\text{T=220}~\text{MeV}$

- ・ゼロ付近は本当にゼロか?
 - ・究極的には
 - $V \rightarrow \infty$
 - ・ *a* → 0 (精密に)スケーリング 必要
- ・しかし、m 依存性は
 - ・相境界 m_c>0 の存在を示唆

$\chi_t(m_f)$ for N_f=2 T=220 MeV

- ・厚切りハム法: Slab method
 - ・大局的トポロジー(サンプル困難)を
 - ・局所的電荷密度(サンプル容易)から推定

[Bitenholz, Forcrand, Gerber (2015)]

・テスト良好

T=220, 264 & 330 MeV; 1/a=2.6 GeV 固定

- 途中経過
- filled symbol: by mass reweighting
- ・緑:Lx1.5 (T=330 MeVのみ) 有限体積効果を調べる

現時点で得られている T 依存性

m。の存在を仮定すると m。(T) ↑ as T↑

U(1)_Aの役割とトポロジー

- ・QCDの大局的対称性: U(N_f)_L x U(N_f)_R @ m_f→0
- 高温 T>T_c: → SU(N_f)_V x U(1)_V x SU(N_f)_A x U(1)_A ?
 - ・SU(N_f)_Aは回復、U(1)_Aは?
 - それぞれ秩序パラメタにから確認できるはず
- フェルミオンゼロモードを通した関係: ρ(λ): 固有値λの密度

U(1)_A 秩序パラメタ

$$\Delta_{\pi-\delta} = \int_0^\infty d\lambda \,\rho(\lambda) \frac{2m^2}{(\lambda^2 + m^2)^2}$$

U(1)_A 秩序パラメタ

U(1)A 秩序パラメタとトポロジカル感受率

これまでの結果の纏めと考察

- ・N_f=2 QCD の高温相で トポロジカル感受率χtを調べている
- •m=0 近傍ではカイラル対称性が必須と考えられる量を計算する枠組み:
 - ・ DWF @ 高精細格子 (1/a ~ 2.6 GeV) → オーバーラップ 再重み付け
 - ・トポロジカル電荷:2つの定義
- •T = 220 MeV, 330 MeV では m: 小、大を分ける境界がありそうである
- ・m:小で χ_t 著しく小さくなるが、厳密に χ_t=0 かは不明
- 相境界 m_c があるとすると m_c(T) ↑ as T↑
 - ➡ T_c(m) ↑ for m1: 自然
- ・他の物理量(Δ_{π-δ}, Σ)の解析, 異なる V, 異なるTの計算を通して 精密化を試みる

χ_t(T, m)の問題と方針

- 特にサンプルするのが困難な量
 - $Q_t \neq 0$ セクターのサンプルが困難。しかし正しい χ_t のために必要。
 - reweighting によってさらに有効サンプル数の減少→系統誤算に反映(yet)
 - → 「厚切りハム法」の併用でクロスチェック
- ・ $\chi_t \simeq 0$ は本当に ゼロか?: smoking gun と言っても良いので重要
 - ・統計増、厚切りハム法によるチェック(局所揺らぎからの推定)
 - 体積効果を系統的に調べる
- m_c
 - ・ (✔)ゼロ温度 simulation より、physical scale を決める: m_c>m_{ud}
- 他の物理量も確認: (Δ_{π-δ},Σ)の解析, バルクな量

χ_t(T, m)の問題と方針。さらに。

- ・ β=4.30 (1/a=2.6 GeV); L_s=32 で別の温度も調べる: T=1/(a N_t)
 - ・格子間隔 a(β), 空間体積を固定するので、物理効果を見やすい

• 体積効果

・ L_s=32→24: Oakforest PACS で進行中

さらにその先のプラン

- 物理
 - QCD有限温度相転移
 - N_f=2
 - 高温でのトポロジカル感受率の振る舞いを系統的に解明する
 - ・T < T_c まで攻める N_f=2+1 へ ・ m_s=∞ → m_s<∞ → m_s^{phys}
 0 $T < T_c$ m_c m_f

計算機とコード

- 計算機:
 - ・Blue Gene Q: 2017.9 まで
 - KNL:
 - 京都: 2016.10-2017.3
 - Oakforest-PACS: 2017.1-
- コード: Irolro++ から Grid に移行中
 - Irolro++: BGQに特化, KNL では遅い
 - ・Grid: KNL 最適化進行中: P.Boyle, G.Cossu (Edinburgh) らに協力
 - ・重点課題9の松古さん,金森さんと情報交換