計算基礎科学連携拠点 研究報告会

サブ課題B 原子核

モンテカルロ殻模型による軽い核の第一原理計算

阿部 喬 (東大理)

筑波大学計算科学研究センター 2016年10月14日

Nuclear Landscape

UNEDF SciDAC Collaboration: http://unedf.org/

126

r-process

terra incognita

stable nuclei

HH ...

known nuclei

A STATION

neutrons

~ 300 stable nuclei

~ 3000 unstable nuclei found experimentally~ 10000 nuclei predicted by model calculations

Ab-inito approaches in low-energy nuclear physics

- Major challenge in nuclear physics
 - Nuclear structure & reactions from *ab-initio* calculations w/ nuclear forces
 - *ab-initio* approaches in nuclear structure calculations (A > 4):

Green's Function Monte Carlo, No-Core Shell Model (A ~ 12),

Coupled Cluster (sub-shell closure +/- 1,2),

Self-consistent Green's Function theory, IM-SRG, Lattice EFT, ...

→ computationally demanding

- Two main sources of uncertainties:
 - Many-body methods

CI: Finite basis space (choice of basis function and truncation), (N_{shell} , $h\omega$) we have to extrapolate to infinite basis dimensions

✓ need *ab-initio*(-like) approaches beyond standard NCSM

→ No-Core Monte Carlo Shell Model (MCSM)

Nuclear forces (interactions btw/among nucleons)

 \rightarrow Chiral effective field theory (χ EFT)

✓ In principle, they are hopefully obtained by (Lattice) QCD.

Shell model (Configuration Interaction, CI)

• Eigenvalue problem of large sparse Hamiltonian matirx

Monte Carlo shell model (MCSM)

M-scheme dimension in N_{shell} truncation

Extrapolations

Strong scaling (eigen functions & eigenvalues)

• Wave function (100 CG iterations @ 100th basis)

Scales up to ~ 60,000 cores @ N_{shell} = 7 (⁴He) on K computer

Strong scaling (energy variances)

Energy variance (1st – 100th bases)

Scales over ~ 240,000 cores @ N_{shell} = 7 (⁴He) on K computer

Comparison of MCSM results w/ experiments

MCSM results are obtained using K computer by traditional extrapolation w/ optimum harmonic oscillator energies.

Coulomb interaction is included perturbatively.

MCSM results show good agreements w/ experimental data up to 12 C, slightly overbound for 16 O, and clearly overbound for 20 Ne.

Nuclear force from xEFT

- Current standard input potential:
- Chiral effective field theory (χ EFT) described by N & π DoF (Weinberg, van Kolck, ...)
 - ✓ xEFT holds the effect of chiral symmetry breaking & the symmetries retained in low-energy QCD
 - ✓ xEFT N3LO NN + N2LO 3N

- E. Epelbaum, Prog. Part. Nucl. Phys. 57, 654 (2006).
- R. Machleidt and D. R. Entem, Phys. Rep. 503, 1 (2011).
- ✓ Renormalization technique: SRG, V_{low k}, UCOM, ...
- 3N interaction: Full, NO2B approx., ...

K. Hebeler, H. Krebs, E. Epelbaum, J. Golak, & R. Skibinski, arXiv:1502.02977

Effective 2N force from 3N force

Effective 2N potential from initial 3N potential in momentum space

Energies with 3NF in the different cutoff scales are consistent in a sufficiently large basis space

Density distribution in MCSM

N. Shimizu, T. Abe, Y. Tsunoda, Y. Utsuno, T. Yoshida, T. Mizusaki, M. Honma, T. Otsuka₁₃ Progress in Theoretical and Experimental Physics, 01A205 (2012)

Density distribution of Be isotopes

T. Yoshida (CNS) **Preliminary**

2-α-cluster structure

. 0.040

0.032

0.024

0.016

0.008

0.000

-0.008

-0.016

-0.024

-0.032

-0.040

0.040

0.032

0.024

0.016

0.008

0.000

-0.016

-0.024

-0.032

-0.040

0.040

0.032

0.024

0.016

0.008

0.000

-0.008

-0.016

-0.024

-0.032

-0.040

0

2

2

4

0

X (fm)

0.01

0.00

-4

-2

0

2

4

4

0.03

0.00

-4

4

-4

-2

0

2

-2

0

2

4

Molecular-orbital states

Summary

- MCSM results of g.s. energies for light nuclei (A<= 20) w/ a NN potential can be extrapolated to the infinite basis space.
 - JISP16 NN interaction gives good agreement w/ experimental data up to ¹²C, slightly overbound for ¹⁶O, and clearly overbound for ²⁰Ne.
- Effective 2NF from 3NF in the χ EFT has been tested in the MCSM.
- Cluster structure of Be isotopes can be visualized using MCSM wave functions.

Future perspective

- MCSM w/ SRG evolved χEFT interactions
- Check of convergence w.r.t. the basis space & extrapolation
- Cluster structure of carbon isotopes (3α structure, Hoyle state, ...)

モンテカルロ殻模型による第一原理計算のまとめと今後の展望

- <u>京より前</u>
 - A=4-12(⁴He-¹²C) ← p殻核の全般
 - 模型空間:4主殻まで
 - 二体力のみ
- <u>京で完了したこと</u>
 - A = 20 (²⁰Ne)まで ← sd 殻核の始め
 - 模型空間:7主殻(当初予定は6主殻)まで → 模型空間無限大への外挿が可能
 - ベリリウム同位体のクラスター構造の可視化(分子軌道状態も)
 - 有効二体化した三体力のテスト → 三体力の部分的な導入
- 引き続き京でやっていること
 - ¹²CのHoyle状態
 - 三体力の本格的な導入
- ・ <u>ポスト京で</u>
 - A~40(sd殻核)、模型空間:8主殻
 - 炭素同位体(Hoyleを含む)のクラスター構造の解析
 - 三体力の本格的な導入 $\rightarrow \chi EFT$ や格子QCDによる核力
 - ▶ 軽・中重核の構造の核力に基づく第一原理計算による解明

素粒子・原子核・宇宙「京からポスト京に向けて」 シンポジウム@ワテラスコモンホール (2016年3月30-31日)

Collaborators

- U of Tokyo
 - Takaharu Otsuka (Department of Physics)
 - Noritaka Shimizu (CNS)
 - Tooru Yoshida (CNS)
 - Takayuki Miyagi (Department of Physics)
 - Sota Yoshida (Department of Physics)
- JAEA
 - Yutaka Utsuno
- Iowa State U
 - James P. Vary
 - Pieter Maris
- Kyushu Institute of Technology
 - Ryoji Okamoto
- RCNP, Osaka U
 - Michio Kohno