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and many others…
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Solve the Schrodinger equation with : 
1. Nuclear force 
2. Degrees of freedom which is appropriate for  the 
problem we like to attack

What we have to overcome are: 
A. Nuclear force has strong short range repulsion 
(singularity) -> Vlowk interaction (not today) 

B. Unless we take whole Hilbert space, we need to fix 
effective interaction for selected model space

| i : many-body wave function
non-relativistic schrodinger equation



Nuclear force and Nuclear shell model

input 

εi : single particle energies 

Vij,kl : two-body matrix 
elements

Chapter 2

Review of effective interaction for the shell
model

In this chapter, we review the various theories of the effective interaction of the nuclear force, focusing
on the renormalization scheme related to the effective interaction for the shell model.

Nuclear shell model is a configuration interaction method, which is based on usually two-body
interactions and single-particle energies.

Nuclear shell model starts from the following second quantized Hamiltonian,

H =
∑

i

ϵia†i ai +
∑

i jkl

Vi j,kl a†i a†jalak. (2.1)

The input parameter is the single particle energies ϵi and the two-body interactions Vi j,kl. Then, we
calculate the Hamiltonian of many-body states, and diagonalize it to obtain the eigenenergies and the
wave functions.

The creation (annihilation) operators create (annihilate) the nucleons in some discrete orbits. Usu-
ally, these orbits are defined as the eigenfunctions of the harmonic oscillator or the Woods-Saxon
potential, for example. Nuclei have several tens of nucleons typically, which usually give rise to in-
tractably large dimensions. Therefore we have to restrict ourselves to the finite small dimension, to
diagonalize the Hamiltonian matrices. We define a subspace of whole Hilbert space which is called
the model space, where the nucleons can move inside. We also in many cases consider a frozen-core
states like 16O, whose degrees of freedom are killed. As an approximation, the particles are assumed
to move only outside of the core, because these degrees of freedom are enough to explain many
part of the properties of the nuclei heavier than the core. This assumption enlarges the region of the
calculation drastically as well.

Therefore, we have to determine the suitable parameter ϵi and Vi j,kl appropriate to relevant degrees
of freedom. Once we have a reliable Hamiltonian, we can calculate the Hamiltonian of many-body
states and diagonalize it, to obtain the binding energies, wave functions, the strength of the transitions
and the other various useful physical quantities. These parameters are often called effective interaction
for the shell model calculations.

13

Shell model Hamiltonian

output 

Nuclear properties 

Binding energy, energy spectrum, 
transition probability , etc…

diagonalization

Derive Shell model Hamiltonian based on Nuclear force and 
many-body theories
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For the further decomposition, we introduce two things. One is Q̂-box and the other is folded
diagrams. The Q̂-box is defined as

Q̂(E) = PVP + PVQ
1

E − QHQ
QVP

= PVP + PVQ
1

E − QH0Q
QVP + PVQ

1
E − QH0Q

QVQ
1

E − QH0Q
QVP + · · · (2.71)

which is already appeared in the formal theory of KK method and LS method. The Q̂-box is the
summation of all the contribution of the “irreducible” diagrams. Here the term “irreducible” means
that the diagrams cannot be divided into two pieces by cutting the P-space state by a horizontal line.
Therefore, in the evaluation of Q̂-box, we do not face to the divergence caused by the zero energy-
denominator, if the P-space is degenerate and the unperturbed Q-space energy is different from that
of P-space.

Next, we move to the folded diagrams. Let us consider the diagram which includes two vertices
at t = t1 and t = t2, with t1 > t2. When the state before t = t2 and after t = t2 are the same, clearly we
face to the zero denominator. This divergence can be factorized as follows:

❝❝t1
t2

= ❝t1 × ❝t2 − ❝t1

❝t2
!
! . (2.72)

In the left hand side, 0 > t1 > t2, and in the right hand side, the first term does not have the restriction
of ordering and the second term is the corresponding subtraction of 0 > t2 > t1. Suppose the railed line
is in Q-space and the other is in P-space. Since P-space is degenerate, the left hand side is obviously
divergent. In the right hand side, the divergence is only appearing in the second factor in the first
term. In this sense, Eq. (2.72) shows the minimal example of factorization of the divergence. Our
purpose of implement the factorization theorem and folded diagram procedure is that we factorize the
divergence and cancel them so that we obtain the finite physical results.

Now we come back to the factorization of Eq. (2.70). Both the first and second term include the
divergence. The first term |χP⟩, which terminate at t = 0 as P-space state, is expressed as

|χP⟩ = + ✉ + ✉✉ + ✉✉✉ + · · · (2.73)

where filled circle represent the Q̂-box and the line is the two-body states within P-space. Since we
are considering of degenerate P-space, this leads a clear divergence. On the other hand, the second
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the same time, the eigenvalue Ei in Eq. (2.56) changes its meaning; it is no longer the total energy of
the system, but is now the total energy measured from the true ground state energy of the core.

In actual calculations, however, we do not calculate Veff order by order using Eq. (2.86). Since
the contribution of folded diagrams can be calculated by energy derivatives when the model space is
degenerate [11], we can translate Eq. (2.86) into the following equation

Veff = Q̂(ϵ0) +
∞∑

k=1

Q̂k(ϵ0){Veff}k, (2.87)

The above expression clearly shows that the iterative solution of Eq. (2.46) converges Veff in the limit
of n→ ∞.

We can summarize the KK method as follows; we calculate the valence-linked Q̂-box diagrams
(usually up to second or third order) and the corresponding energy derivatives at the degenerate P-
space energy ϵ0, and carry out the iteration of Eq. (2.46) starting from V (0)

eff = V . This procedure
ultimately gives Veff = V (∞)

eff .

Figure 2.3: Valence-linked Q̂-box diagrams up to second order in V .

At the end, we stress again that the above KK method can yield Veff only for a degenerate model
space. Suppose we are working with the harmonic oscillator shell model of 18O, treating 16O as the
core. If we take the P-space composed only of the degenerate sd-shell, the above KK method works
well as shown by many applications (see for example Ref. [26]). If, on the other hand, we take an

Diagrams appearing in 2nd order Q-box

Q-box is the ingredient of effective interaction and approximated by perturbation theory 
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condition, the following solution need the condition of degenerate unperturbed eigenvalues in P-
space. We first explain the KK method [27] for the degenerate model space. Then we explain the
LS method [28] for the degenerate model space. Both methods eliminate the energy-dependence of
HBH(E) of Eq. (2.27) by introducing the so-called Q̂-box and its energy derivatives, resulting in an
energy-independent effective interaction Heff .

2.3.1 Kuo-Krenciglowa (KK) method

In the KK method, we assume a degenerate model space,

PH0P = ϵ0P. (2.41)

Then Eq. (2.34) reads

(ϵ0 − QHQ)ω = QVP − ωPVP − ωPVQω. (2.42)

The KK method provide us a one possible way to solve this decoupling equation. Multiplying (ϵ0 −
QHQ) from the left,

ω =
1

ϵ0 − QHQ
(QVP − ω (PVP + PVQω))

=
1

ϵ0 − QHQ
(QVP − ωVeff) , (2.43)

using the expression of Veff in Eq. (2.36). Then we obtain the the following iterative form:

ω(n) =
1

ϵ0 − QHQ

(
QVP − ω(n)V (n−1)

eff

)
, (2.44)

where ω(n) and V (n)
eff = PVP + PVQω(n) stand for ω and Veff in the n-th step, respectively.

Now we introduce the important operator called Q̂-box as follows:

Q̂(E) = PVP + PVQ
1

E − QHQ
QVP,

Q̂k(E) =
1
k!

dkQ̂(E)
dEk . (2.45)

The Q̂-box is clearly defined as an operator act in P-space. Intuitively this quantity stands for the
interacting matrix which the P-space wavefunction having energy E makes excited to Q-space, and
propagate in Q-space, and then makes it back to P-space again.

Then we immediately arrive at the following iterative formula for V (n)
eff :

V (n)
eff = Q̂(ϵ0) +

∞∑

k=1

Q̂k(ϵ0){V (n−1)
eff }k. (2.46)

In the limit of n → ∞, Eq. (2.46) gives Veff = V (∞)
eff , if the iteration converges. The first term of

Eq. (2.46) is Q̂-box itself, which means the effective interaction include the effect of virtual excitation

beyond perturbation contribution
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given schematically by

Q̂(E) =
∏ V

E − (
∑
ϵa +

∑
ϵp −

∑
ϵh)int
, (3.20)

where the subscript int indicates intermediate states between two interaction vertices. Note that the
parameter E appears in all the denominators in the EKK method.

To make our diagram rules clear, let us see an example. The diagram shown in Fig. 3.2 is a

Figure 3.2: Core-polarization diagram as a second-order contribution to the Q̂-box. The energy de-
nominator is written as D1 and D2.

member of Q̂-box diagram. The diagram is a contribution from the second-order term in Eq. (2.71).
The energy denominator for the lower dashed line is denoted as D1 and for the intermediate state we
use D2, and the energy denominator of this diagram should be calculated as D1 − D2. Therefore, it
gives the following contribution to Q̂(E)

Fig. 3.2 (EKK)→ Vah,cpVpb,hd

E − ϵc − ϵb − ϵp + ϵh
. (3.21)

If we on the other hand employ the KK method in order to calculate the contribution to Q̂(ϵ0) from
Fig. 3.2, we would get

Fig. 3.2 (KK) → Vah,cpVpb,hd

(ϵc + ϵd) − ϵc − ϵp + ϵh − ϵb

=
Vah,cpVpb,hd

−ϵp + ϵh
(3.22)

where, in going to the second line, we have used the fact that the P-space is degenerate, and therefore
ϵa = ϵb = ϵc = ϵd and ϵc + ϵd = ϵ0.

Two points should be noted from the above example; first, in a degenerate model space, the EKK
result Eq. (3.21) with E = ϵ0 coincides with the KK result Eq. (3.22). This is a direct consequence
of the fact that the EKK formula contains the KK formula as a special case. Second, we can see the
problem of divergence of the KK formula applied naively to a non-degenerate model space. Consider
the case of 18O as an example, and let the P-space consist of two major shells (1s0d and 1p0 f -shells).
The single particle states are taken as the eigenstates of harmonic oscillator potential. Then, the
denominator of the first line in Eq. (3.22) vanishes for b, c, p ∈ 1s0d-shell, a, d ∈ 1p0 f -shell, and
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(A)Folded diagram theory requires assumption that the model space is degenerate 

(B)Naive perturbation theory leads a divergence in non-degenerate model space

Example

Energy denominator is zero 
when εd - εb = εp - εh

We need a theory which satisfies 

(a)The assumption of degenerate 
model space is removed 

(b)Avoid the divergence 
appearing in Q-box diagrams 

→ EKK method as a re-summation 
scheme of KK method



Extended KK method as a re-summation of the 
perturbative series
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3.2 Extended Kuo-Krenciglowa method in many-body system

Here we derive the effective Hamiltonian Heff of the Extended Kuo-Krenciglowa (EKK) method, with
an emphasis on its similarity with the KK method discussed in the Chap. 2.

3.2.1 Derivation of the Extended Kuo-Krenciglowa method

We consider first the general situation where the energies of the valence single-particle states in PH0P
are not necessarily degenerate. In this case, we have to apply the EKK formula Eq. (3.6) to our many-
body systems.

We start from the Hamiltonian in many-body system,

H = H0 + V

=
∑

ϵαa†αaα +
1
2

∑

αβ,γδ

Vαβ,γδa†αa†βaδaγ, (3.11)

We can confirm that, in order to derive Eq. (3.6), we need to change the decomposition Eq. (2.53) of
the Hamiltonian in the KK method. Suppose we decompose the total Hamiltonian into the following
unperturbed Hamiltonian H′0 and the perturbation V ′

H′0 = PEP + QH0Q

V ′ = V − P(E − H0)P, (3.12)

or in the matrix form,

H = H′0 + V ′

=

⎛
⎜⎜⎜⎜⎜⎝
E 0
0 QH0Q

⎞
⎟⎟⎟⎟⎟⎠ +

⎛
⎜⎜⎜⎜⎜⎝
PH̃P PVQ
QVP QVQ

⎞
⎟⎟⎟⎟⎟⎠ , (3.13)

where H̃ ≡ H−E. With the above unperturbed Hamiltonian H′0 in Eq. (3.12), we can treat the P-space
as being degenerate at the energy E, and therefore we can follow the derivation of Eq. (2.86) in the
KK method, to achieve

H̃eff = H̃BH(E) − Q̂′(E)
∫

H̃BH(E) + Q̂′(E)
∫

H̃BH(E)
∫

H̃BH(E) · · · , (3.14)

which is then converted into

H̃eff = H̃BH(E) +
dQ̂(E)

dE
H̃eff +

1
2!

d2Q̂(E)
dE2 {H̃eff}2 + · · · . (3.15)

The point is that the derivative of Q̂-box is the same as derivative of HBH. Since the Q̂-box include
the interaction of QVP,PVQ and QVQ, all the interaction vertices are not affected by the shift of
unperturbed Hamiltonian from H0 to H′0.

EKK method is derived with the following re-interpretation of the Hamiltonian 

Change PH0P part of the unperturbed Hamiltonian
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For the further decomposition, we introduce two things. One is Q̂-box and the other is folded
diagrams. The Q̂-box is defined as

Q̂(E) = PVP + PVQ
1

E − QHQ
QVP

= PVP + PVQ
1

E − QH0Q
QVP + PVQ

1
E − QH0Q

QVQ
1

E − QH0Q
QVP + · · · (2.71)

which is already appeared in the formal theory of KK method and LS method. The Q̂-box is the
summation of all the contribution of the “irreducible” diagrams. Here the term “irreducible” means
that the diagrams cannot be divided into two pieces by cutting the P-space state by a horizontal line.
Therefore, in the evaluation of Q̂-box, we do not face to the divergence caused by the zero energy-
denominator, if the P-space is degenerate and the unperturbed Q-space energy is different from that
of P-space.

Next, we move to the folded diagrams. Let us consider the diagram which includes two vertices
at t = t1 and t = t2, with t1 > t2. When the state before t = t2 and after t = t2 are the same, clearly we
face to the zero denominator. This divergence can be factorized as follows:

❝❝t1
t2

= ❝t1 × ❝t2 − ❝t1

❝t2
!
! . (2.72)

In the left hand side, 0 > t1 > t2, and in the right hand side, the first term does not have the restriction
of ordering and the second term is the corresponding subtraction of 0 > t2 > t1. Suppose the railed line
is in Q-space and the other is in P-space. Since P-space is degenerate, the left hand side is obviously
divergent. In the right hand side, the divergence is only appearing in the second factor in the first
term. In this sense, Eq. (2.72) shows the minimal example of factorization of the divergence. Our
purpose of implement the factorization theorem and folded diagram procedure is that we factorize the
divergence and cancel them so that we obtain the finite physical results.

Now we come back to the factorization of Eq. (2.70). Both the first and second term include the
divergence. The first term |χP⟩, which terminate at t = 0 as P-space state, is expressed as

|χP⟩ = + ✉ + ✉✉ + ✉✉✉ + · · · (2.73)

where filled circle represent the Q̂-box and the line is the two-body states within P-space. Since we
are considering of degenerate P-space, this leads a clear divergence. On the other hand, the second
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1, · · · ,D): ⎛
⎜⎜⎜⎜⎜⎝
PHP PVQ
QVP QHQ

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝
|φλ⟩
|ρλ⟩

⎞
⎟⎟⎟⎟⎟⎠ = Eλ

⎛
⎜⎜⎜⎜⎜⎝
|φλ⟩
|ρλ⟩

⎞
⎟⎟⎟⎟⎟⎠ , (2.22)

where |φλ⟩ = P|Ψλ⟩ is the projection of the true eigenstate |Ψλ⟩ onto the P-space. The Q-space
component is written as |ρλ⟩ = |Ψλ⟩ − |φλ⟩. Then we obtain

|ρλ⟩ = (Eλ − QHQ)−1QVP|φλ⟩ (2.23)

|φλ⟩ = (Eλ − PHP)−1PVQ|ρλ⟩. (2.24)

Substituting these equation, we can decouple the equation to P-space and Q-space respectively as
follows,

(
PHP − 1

Eλ − QHQ
QVP

)
|φλ⟩ = Eλ|φλ⟩ (2.25)

(
QHQ − 1

Eλ − PHP
PVQ

)
|ρλ⟩ = Eλ|ρλ⟩. (2.26)

The first equation is exactly the secure equation defined only in P-space and the second one is in Q-
space. For our purpose of obtaining the effective theory defined in P-space, we solve adapt Eq. (2.25)
and introduce the following Bloch-Horowitz effective Hamiltonian HBH defined purely in the P-space,

HBH(E) = PHP + PVQ
1

E − QHQ
QVP. (2.27)

Then Eq. (2.17) reads,
HBH(Eλ)|φλ⟩ = Eλ|φλ⟩, λ = 1, · · · ,D. (2.28)

Note that Eq. (2.28) requires a self-consistent solution, because HBH(Eλ) depends on the eigenen-
ergy Eλ. In the previous section, we saw the case in which we know the exact solution but still we
need to calculate the effective interaction. In this case, however, we do not know the exact solution
generally, because the Hamiltonian in the full space is supposed to have the intractably large dimen-
sion. Therefore, the energy-dependence of the effective interaction is not a desirable property for the
shell-model calculation, and therefore we adopt the energy-independent approach below.

2.2.3 Energy-independent approach

Next we introduce the energy-independent effective Hamiltonian in the P-space. We first choose d
eigenstates {|Ψi⟩, i = 1, · · · , d} among D solutions of Eq. (2.17), with d ≤ D. Then we require that
|φi⟩ = P|Ψi⟩, the P-space component of the chosen d eigenstates, be described by the d-dimensional
effective Hamiltonian Heff as

Heff |φi⟩ = Ei|φi⟩, i = 1, · · · , d. (2.29)

This energy-independent effective Hamiltonian is most concisely described as

Heff =

d∑

i=1

|φi⟩Ei⟨φ̃i|, (2.30)
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eff :

V (n)
eff = Q̂(ϵ0) +

∞∑

k=1

Q̂k(ϵ0){V (n−1)
eff }k. (2.46)

In the limit of n → ∞, Eq. (2.46) gives Veff = V (∞)
eff , if the iteration converges. The first term of

Eq. (2.46) is Q̂-box itself, which means the effective interaction include the effect of virtual excitation
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Then we impose the decoupling condition for the transformed HamiltonianH ,

0 = QHP = QVP − ωPHP + QHQω − ωPVQω, (3.3)

which decouples the P-space Schrödinger equation to Q-space.
Now we rewrite Eq. (3.3) as

(E − QHQ)ω = QVP − ωPH̃P − ωPVQω, (3.4)

where
H̃ = H − E (3.5)

is a shifted Hamiltonian obtained by the introduction of the energy parameter E. Equation (3.4) plays
the same role in the EKK method as Eq. (2.42) does in the KK method. The difference is that we
introduce a parameter E and replace PVP by PH̃P. By solving Eq. (3.4) iteratively as in the KK
method, we obtain the following iterative scheme to calculate the effective Hamiltonian Heff instead
of Veff ,

H̃(n)
eff = H̃BH(E) +

∞∑

k=1

Q̂k(E){H̃(n−1)
eff }k, (3.6)

where
H̃eff = Heff − E, H̃BH(E) = HBH(E) − E, (3.7)

and H̃(n)
eff stands for H̃eff at the n-th step. The effective Hamiltonian Heff is obtained as Heff = H(∞)

eff , and
satisfies

H̃eff = H̃BH(E) +
∞∑

k=1

Q̂k(E){H̃eff}k. (3.8)

The effective interaction, Veff, is then calculated by Eq. (2.36) as Veff = Heff − PH0P. Here the
definition of Q̂-box is the same as KK method, that is,

Q̂(E) = PVP + PVQ
1

E − QHQ
QVP, (3.9)

and the derivative of Q̂-box is

Q̂k(E) =
1
k!

dkQ̂(E)
dEk . (3.10)

Let us now compare the EKK and the KK methods. First, and most importantly, the above EKK
method does not require that the model space is degenerate. It can, therefore, be applied naturally to
a valence space composed of several shells. Second, Eq. (3.6) changes H̃eff , while Eq. (2.46) changes
only Veff at each step of the iterative process. Third, in order to perform the iterative step of Eq. (3.6),
we need to calculate Q̂k(E) at the arbitrarily specified energy E, instead of at ϵ0 for Eq. (2.46).

Equation (3.8) is interpreted as the Taylor series expansion of H̃eff around H̃BH(E), and changing E
corresponds to shifting the origin of the expansion, and therefore to a re-summation of the series. This
explains why the left hand side of Eq. (3.8) is independent of E, while each term on the right hand
side depends on E. This in turn means that we can tune the parameter E in Eq. (3.8) to accelerate the
convergence of the series on the right hand side, a feature which we will exploit in actual calculations.

KK method EKK method

New parameter E (arbitrary parameter)

• One can take E so as to avoid the divergence ! 
• Final result does not depends on E.



Extended KK method as an analogy of Taylor series
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condition, the following solution need the condition of degenerate unperturbed eigenvalues in P-
space. We first explain the KK method [27] for the degenerate model space. Then we explain the
LS method [28] for the degenerate model space. Both methods eliminate the energy-dependence of
HBH(E) of Eq. (2.27) by introducing the so-called Q̂-box and its energy derivatives, resulting in an
energy-independent effective interaction Heff .

2.3.1 Kuo-Krenciglowa (KK) method

In the KK method, we assume a degenerate model space,

PH0P = ϵ0P. (2.41)

Then Eq. (2.34) reads

(ϵ0 − QHQ)ω = QVP − ωPVP − ωPVQω. (2.42)

The KK method provide us a one possible way to solve this decoupling equation. Multiplying (ϵ0 −
QHQ) from the left,

ω =
1

ϵ0 − QHQ
(QVP − ω (PVP + PVQω))

=
1

ϵ0 − QHQ
(QVP − ωVeff) , (2.43)

using the expression of Veff in Eq. (2.36). Then we obtain the the following iterative form:

ω(n) =
1

ϵ0 − QHQ

(
QVP − ω(n)V (n−1)

eff

)
, (2.44)

where ω(n) and V (n)
eff = PVP + PVQω(n) stand for ω and Veff in the n-th step, respectively.

Now we introduce the important operator called Q̂-box as follows:

Q̂(E) = PVP + PVQ
1

E − QHQ
QVP,

Q̂k(E) =
1
k!

dkQ̂(E)
dEk . (2.45)

The Q̂-box is clearly defined as an operator act in P-space. Intuitively this quantity stands for the
interacting matrix which the P-space wavefunction having energy E makes excited to Q-space, and
propagate in Q-space, and then makes it back to P-space again.

Then we immediately arrive at the following iterative formula for V (n)
eff :

V (n)
eff = Q̂(ϵ0) +

∞∑

k=1

Q̂k(ϵ0){V (n−1)
eff }k. (2.46)

In the limit of n → ∞, Eq. (2.46) gives Veff = V (∞)
eff , if the iteration converges. The first term of

Eq. (2.46) is Q̂-box itself, which means the effective interaction include the effect of virtual excitation
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Then we impose the decoupling condition for the transformed HamiltonianH ,

0 = QHP = QVP − ωPHP + QHQω − ωPVQω, (3.3)

which decouples the P-space Schrödinger equation to Q-space.
Now we rewrite Eq. (3.3) as

(E − QHQ)ω = QVP − ωPH̃P − ωPVQω, (3.4)

where
H̃ = H − E (3.5)

is a shifted Hamiltonian obtained by the introduction of the energy parameter E. Equation (3.4) plays
the same role in the EKK method as Eq. (2.42) does in the KK method. The difference is that we
introduce a parameter E and replace PVP by PH̃P. By solving Eq. (3.4) iteratively as in the KK
method, we obtain the following iterative scheme to calculate the effective Hamiltonian Heff instead
of Veff ,

H̃(n)
eff = H̃BH(E) +

∞∑

k=1

Q̂k(E){H̃(n−1)
eff }k, (3.6)

where
H̃eff = Heff − E, H̃BH(E) = HBH(E) − E, (3.7)

and H̃(n)
eff stands for H̃eff at the n-th step. The effective Hamiltonian Heff is obtained as Heff = H(∞)

eff , and
satisfies

H̃eff = H̃BH(E) +
∞∑

k=1

Q̂k(E){H̃eff}k. (3.8)

The effective interaction, Veff, is then calculated by Eq. (2.36) as Veff = Heff − PH0P. Here the
definition of Q̂-box is the same as KK method, that is,

Q̂(E) = PVP + PVQ
1

E − QHQ
QVP, (3.9)

and the derivative of Q̂-box is

Q̂k(E) =
1
k!

dkQ̂(E)
dEk . (3.10)

Let us now compare the EKK and the KK methods. First, and most importantly, the above EKK
method does not require that the model space is degenerate. It can, therefore, be applied naturally to
a valence space composed of several shells. Second, Eq. (3.6) changes H̃eff , while Eq. (2.46) changes
only Veff at each step of the iterative process. Third, in order to perform the iterative step of Eq. (3.6),
we need to calculate Q̂k(E) at the arbitrarily specified energy E, instead of at ϵ0 for Eq. (2.46).

Equation (3.8) is interpreted as the Taylor series expansion of H̃eff around H̃BH(E), and changing E
corresponds to shifting the origin of the expansion, and therefore to a re-summation of the series. This
explains why the left hand side of Eq. (3.8) is independent of E, while each term on the right hand
side depends on E. This in turn means that we can tune the parameter E in Eq. (3.8) to accelerate the
convergence of the series on the right hand side, a feature which we will exploit in actual calculations.
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Nuclear force and Nuclear shell model

Effective interaction in two-body space Three-body force

+

Reduce interaction to the model space 
perturbatively 
Many-body perturbation theory

Chapter 2

Review of effective interaction for the shell
model

In this chapter, we review the various theories of the effective interaction of the nuclear force, focusing
on the renormalization scheme related to the effective interaction for the shell model.

Nuclear shell model is a configuration interaction method, which is based on usually two-body
interactions and single-particle energies.

Nuclear shell model starts from the following second quantized Hamiltonian,

H =
∑

i

ϵia†i ai +
∑

i jkl

Vi j,kl a†i a†jalak. (2.1)

The input parameter is the single particle energies ϵi and the two-body interactions Vi j,kl. Then, we
calculate the Hamiltonian of many-body states, and diagonalize it to obtain the eigenenergies and the
wave functions.

The creation (annihilation) operators create (annihilate) the nucleons in some discrete orbits. Usu-
ally, these orbits are defined as the eigenfunctions of the harmonic oscillator or the Woods-Saxon
potential, for example. Nuclei have several tens of nucleons typically, which usually give rise to in-
tractably large dimensions. Therefore we have to restrict ourselves to the finite small dimension, to
diagonalize the Hamiltonian matrices. We define a subspace of whole Hilbert space which is called
the model space, where the nucleons can move inside. We also in many cases consider a frozen-core
states like 16O, whose degrees of freedom are killed. As an approximation, the particles are assumed
to move only outside of the core, because these degrees of freedom are enough to explain many
part of the properties of the nuclei heavier than the core. This assumption enlarges the region of the
calculation drastically as well.

Therefore, we have to determine the suitable parameter ϵi and Vi j,kl appropriate to relevant degrees
of freedom. Once we have a reliable Hamiltonian, we can calculate the Hamiltonian of many-body
states and diagonalize it, to obtain the binding energies, wave functions, the strength of the transitions
and the other various useful physical quantities. These parameters are often called effective interaction
for the shell model calculations.
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Shell model Hamiltonian

Fujita-Miyazawa interaction



3N interaction

Fujita-Miyazawa three-body force

Three-body force

Virtual excitation to the ∆(1232): lowest excited
state of the nucleons

exchange π meson two times

Renormalization of single particle

energies affected by the Pauli’s

exclusion principle in nuclear

medium

This effect is included automatically
if we consider exchange diagram
(Delta-hole diagram)

→ effective two-body force

→ we call this effective twobody force comes from ∆ hole diagram
FM-twobody force
we calculate the multipole of FM-twobody force in T = 1 channel

Introduction Effective interaction Tensor force Three body force Summary 26/ 32

• Adding up effective 2N interaction derived from 3N 
interaction to EKK 2N effective interaction 

• This is one of the lowest order interaction from 3N 
force and for higher order we are working on…

Fujita-Miyazawa type 
3N interaction

Effective 
2N interaction

summation with hole state
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shell structure ~ island of inversion
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Island of inversion
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Summary and conclusion

• To describe medium mass nuclei starting from nuclear force, we 
need some method to derive effective interaction. 

• EKK method is developed to derive effective interaction for multi-
shell, which has an energy parameter E that we can estimate the 
accuracy of the approximation via E-dependence of the final results. 

• As the application of EKK method Ne, Mg, Si isotopes are discussed. 

• Physics in island of inversion is well described with EKK+3N 
framework
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