課題4:ダークマターの密度ゆらぎから生まれる第1世代天体形成 宇宙初期の銀河形成と宇宙再電離

長谷川賢二 (筑波大CCS神戸分室) 共同研究者

梅村雅之(筑波大), Benoit Semelin(パリ天文台)

HPCI戦略プログラム分野5全体シンポジウム 2014年3月3-4日@富士ソフトアキバプラザ

Reionization

z~1000で一旦中性化し、その後再び電離(現在の宇宙年齢137億年に比べて、非常に早期,10億年くらいまでの出来事)

観測からの中性水素量制限の1例:QSOのSED

■QSOのスペクトルのLya吸収線の 深さから中性水素割合を決める.

Fan+(2006)ので19個のSDSS QSOの解析

z<6では、ほぼ完全電離 z>6では中性水素割合増加?

高赤方偏移

Photon Budget

既にz>6で多くの銀河が観測されており、これらが電離 光子源として有力(これで決まりということもない)

Ionizing photon emissivity vs. recombination rate (Madau+99')

$$\frac{1}{t_{
m rec}} > \frac{\pi \hbar d R \infty}{\pi h} = \alpha_{
m B} < n_{
m H}^2 >= \alpha_{
m B} < n_{
m H} >^2 C$$
 $C \equiv \frac{\langle n^2 \rangle}{\langle n \rangle^2}$ Clumping factor

1) 銀河間物質(Intergalactic medium: IGM) clumping factor

2) 銀河の個数密度 3) 銀河当たりの放射される電離光子数(星形成率× 電離光子の

escape fraction)

High-z galaxies Integrated UV(といってもLya より長波長)光度関数@z~5-8 (Robertson+'13) 観測される銀河のnumber **count**からどの時期で再電 離が可能かどうかを調べる. fesc=0.2, CHII=3を仮定 escape fraction, faintな銀 河の数等の観測できてい ない部分の不定性が大き い。とくにescape fraction は今後も観測できる見込 みはない.

Simulations

これまでの再電離シミュレーション

■輻射輸送の計算コストが高い為に、個々の銀河を分解するほどの空 間分解のがなく、fescはパラメータとして扱わざるを得なかった. ■ほとんどがpost-processingな輻射輸送で為、輻射のダイナミクス へ影響が考慮できないなかった

Internal feedback Wise & Cen '09

★ SFR and Escape fraction * Number of star-forming galaxies これらの量は輻射性フィードバックに敏感で ある事が先行研究(銀河ひとつづつの計算)に よって示される **★**Clumping factor External Feedback Susa & Umemura '04

<u>N-体計算だとz=6でC~10であるが、光加熱効果を考慮するこの値よ</u> り小さくなる(e.g., Pawlik+'09). 再電離史に敏感であると予想される.

本研究

輻射流体計算によって銀河を分解しつつIGMの電 離過程を計算する事で再電離史と銀河形成史を統 一的に理解する.

特に

輻射フィードバックがどのような影響を与えるか? 結果として、どの時期に何故再電離が起こるのか? (Photon Budgetがどう辻褄があっているのか?)

"START"

<u>SPH with Tree-based Accelerated Radiative Transfer</u> (KH & Umemura 2010)

• Hydrodynamics

SPH (Smoothed Particle Hydrodynamics) Lagrange的手法

Non-equilibrium chemistry

 e^- , H^+ , H, H^- , H_2 , H^{2+} , He, He^+ , and He^{2+} , (dust, metal)

"START"

Radiative Transfer of UV photons

(近 子 ガ

- 主に電離、解離光子の輸送(加熱~104K,水素分子=ガス冷却剤の破壊)
- SPH粒子をそのままRTグリッドとして用いる事で高密度領域を分解可能 (cf. ほとんどの他の計算、RT用にグリッドを貼り直す)

$$\frac{1}{c} \frac{\partial I_{\nu}}{\partial t} + n \nabla I_{\nu} = \eta - \chi I_{\nu}$$
 輻射輸送方程式
 $I_{\nu}(\mathbf{r}) = \eta - \chi I_{\nu}$ 幅射輸送方程式
 $I_{\nu}(\mathbf{r}) = I_{\nu}(0) \exp(-\tau_{\nu})$ 化学反応率
 $\tau_{\nu} = \Sigma N_{i}\sigma_{i,\nu}$ 立体角積分 光加熱率
全ての吸収体の足し合わせ 輻射力
流体+化学反応式とのカップル

Ray-Tracing: Tree-based acceleration

Ray-Tracing: Tree-based acceleration

 $< heta_{
m crit}$ In the limit of $heta_{
m crit} = 0.0$, the scheme corresponds to RSPH (Susa 2006)

l: size of a cell d: distance between a SPH particle and a cell

Level nLevel n-1 Level n-2 Level

1)光源の分布に対して**TREE** 構造を作る。

2)もし、複数の光源を含むセ ル(左図の□)がターゲットとす るSPH粒子より十分遠けれ ば、これらの光源をまとめて 明るい仮想的な光源とみなす.

計算コストはlog(N_s)に比例 # N_s: Number of sources

たくさんの光源からの輻射輸送を高速に解ける.

Setup

- Lambda CDM Cosmology (WMAP 9yr) • 粒子数(Volume): 2×256³粒子(5Mpc)³, 2×512³粒子(20Mpc)³
- m_{SPH} ~10⁴M_{sun}, and ~10⁵M_{sun} (大雑把にz>6 で観測される最も暗い銀河 の1/100-1/1000くらいの質量の銀河を100粒子で分解)

 $\frac{d\rho_*}{dt} = C_* \frac{\rho_{\rm g}}{t_{\rm dyn}} \quad \text{C*=1/30}$

• Feedback processes

Age-dependent SED, SN rate (computed by PEGASE) *HI, HeI, HeII 光電離 と H₂, H⁻, H₂⁺ 光解離

*Thermal SN feedback *metal enrichment + 星間ダスト(Thermal processとSED)

Cosmic SFR and reionization history

*UV feedbackは星 形成率を1/5程度ま で下げる.

Cosmic SFR and reionization history

*UV feedbackは星 形成率を1/5程度ま で下げる. *重元素汚染効果(重 元素冷却、ダストで の水素分子形成)は UV negative feedback を和らげる.

Cosmic SFR and reionization history

*UV feedbackは星 形成率を1/5程度ま で下げる. *重元素汚染効果(重 元素冷却、ダストで の水素分子形成)は UV negative feedback を和らげる.

*今回のシミュレーションでは、z~6.5でほぼ完全電離.

UV (1500Å)光度関数faint endの予言

Escape fraction@z=6

Which are galaxies responsible for Reionization? Intrinsic total emissivity (escape fractionを無視) Low-mass: photo-evaporationで下がる High-mass: 銀河の個数とSFRの銀河質量依存性がほぼ相殺=const

Which are galaxies responsible for Reionization?

Emissivity with escape fraction

Escape fractionの質量依存性と合わせると10°M_{sun}(現在の観測限界より一桁

程度くらい銀河)くらいの銀河が再電離にとって最も重要である事が分かる.

Which are galaxies responsible for Reionization? Emissivity @ z=6-8 Galaxies with 10⁸⁻⁹M_{sun} are responsible for reionization

Impact of UV on IGM clumping factor

✓Total IGM clumpiness:再電離史に非常に敏感

✓HII IGM clumpiness: 再電離期にC_{HII}~2-4

post-processingの輻射輸送計算の場合に比べて、少 ない電離光子数で宇宙を電離できる.

Summary

輻射流体計算によって、宇宙の銀河(内の星)形成史、 再電離史、銀河間物質の力学進化をcosistentに解いた ◆ UV feedback は星形成率(↓)、電離光子脱出割合(↑)、IGM clumping factor(↓)等に影響を与える. ◆結果得られるUV光度関数は、明るい部分で観測とほぼ一致し 暗い側では、DMハロ-の質量関数とは異なりフラットなslopeを 予言する.(次世代の観測機器では、この部分をとらえられる可能 性がある.)

◆低質量(10⁸⁻⁹M_{sun})銀河は、星形成率は低いがf_{esc}が高い為に再 電離に重要に働いている事を示唆.

Comparison with Obs. : $f_{HI} \& T_e$

@z<7 中性水素割合は観測とconsistent.
WMAPで観測される電離の柱密度は再現できない
=>より高赤方偏移のより小質量の天体形成(第一世代天体)の解明が重要

Previous studies on Escape fraction

	Wise & Cen (2009)	Gnedin et al. (2008)	Razoumov et al. (2010)	Yajima et al. (2011)	
空間分解能 (Physical @z=6)	0.1pc	70pc	$\begin{array}{c} 90 pc \\ for 10^9 M_{halo} \\ 530 pc \\ for 10^{12} M_{halo} \end{array}$	260pc	85pc
RHD or Post- processing?	RHD	RHD	Post- processing (no Rad. feedback)	Post- processing (no Rad. Feedback)	RHD
Metal enrichment	×	O (dustlは重要で ない)	O (dustlは重要で ない)	O (dustは重要)	×→O
Method	AMR+ adaptive ray tracing	AMR + OTVET	SPH + adaptive ray tracing	SPH + つくばART	START (SPH + Tree-based Accelerated Ray-Tracing)

What is the role of Metal enrichment?

Cooling (metal & Enhanced H₂ fraction)? OR Dust Absorption

* Even if dust attenuation is neglected, SMF hardly changes.
* If metal cooling and enhanced H2 cooling are neglected, the shape of SMF roughly corresponds to that without Metal enrichment.

Effects of Metal

- * Metal cooling -> Enhancement of SFR. Metallicity-dependent cooling function by MAPPING III
- * Dust (0.1micron) $\rho_{dust} = 0.01 \rho_{gas} Z/Z_{\odot}$ Absorption -> Enhancement of SFR, decrease of f_{esc} Drain & Lee (1984), Table (Size-, and frequencydependent opacity) H₂ formation on the surfaces of grains -> Enhancement of SFR

Temperature of grains => Balance between Emission & absorption

$$\int \pi B_{\nu}(T_{\text{dust}}) 4\pi a_{\text{d}}^2 Q(a_{\text{d}},\nu) d\nu \qquad \mathcal{RT} \qquad \mathcal{Thin}$$
$$= \int 4\pi J_{\nu} \pi a_{\text{d}}^2 Q(a_{\text{d}},\nu) d\nu + \int 4\pi B_{\nu}(T_{\text{CMB}}) \pi a_{\text{d}}^2 Q(a_{\text{d}},\nu) \nu$$

heating by stellar Radiation Sublimation temperature T_{sub}=1500K heating by CMB

Accuracy Test

DATA: The distributions of SPH and (young) Stellar particles @z=7 obtained by a cosmological hydrodynamics simulation $N_{SPH} = 128^3$, $N_s^{\sim}300$

SFR in halos@z=6

