エキゾチックハドロン系の精密科学

根村英克

筑波大学数理物質科学研究科計算科学研究センター

Plan of research

Baryon interaction

÷

J-PARC hyperon-nucleon (YN) scattering

Structure and reaction of (hyper)nuclei

Equation of State (EoS) of nuclear matter

Neutron star and supernova

Comparison between d=p+n and core+Y

	s n	³ D 00000 p	n	L=0 Λ/Λ α Λ	<i>L=2</i> <i>Δ</i> , Σ
	$\langle T_S \rangle$	$\langle T_D \rangle$	$\langle V_{MN}(\text{central})\rangle$	$\langle V_{MM}(\text{tensor}) \rangle$	$\langle V_{NN}(LS) \rangle$
	(MeV)	(MeV)	(MeV)	(MeV)	(MeV)
AV8	8.57	11.31	-4.46	-16.64	-1.02
G3RS	10.84	5.64	-7.29	-11.46	0.00
	$\langle T_{Y-c} \rangle_{\Lambda} \langle Z \rangle$	$T_{Y-C}\rangle_{\Sigma} + \Delta \langle H_C \rangle$	<pre><vym(のこり)></vym(のこり)></pre>	$2 \langle V_{AN-\Sigma N}$ (tensor)>
^{5}He	9.11	3.88+4.68	-0.86	-19.51	
$\Lambda^4 H^*$	5.30	2.43+2.02	0.01	-10.67	
^{4}H	7.12	2.94+2.16	-5.05	-9.22	

Introduction:

51

Tensor ΛN-ΣN force plays a key role for the light hypernuclei:

\otimes An example: pn Λ + NN Σ three-body system.

Miyagawa, et al., PRC 51,

2905 (RDP) of the bound $\Lambda(\Sigma)NN$ system and ...

TABLE II. The various kinetic and potential energy contributions of Eqs. (6) in the hypertriton, using the Nijmegen YN and Nijmegen 93 NN interactions. The potential energy of the hyperon-nucleon interaction is broken up further into its contribution from the states ${}^{1}S_{0}$ and ${}^{3}S_{1}$ - ${}^{3}D_{1}$. All numbers are in units of MeV.

·							
-	Partial wave	$\langle V_{\Lambda N,\Lambda N} angle$	$\langle V_{\Lambda N,\Sigma N} angle$	$\langle V_{\Sigma m{N},\Lambda m{N}} angle$	$\langle V_{\Sigma N,\Sigma N} angle$	$\langle V_{YN} \rangle$	
-	¹ S ₀	-1.60	-0.19	-0.19	0.03	-1.95	
	${}^{3}S_{1}{}^{-3}D_{1}$	0.02	-0.77	-0.77	-0.06	-1.57	
	all	-1.58	-0.97	-0.97	-0.02	-3.54	
	_	$\langle V_{NN} angle_{\Lambda}$	$\langle V_{NN} angle_{\Sigma}$			$\langle V_{NN} angle$	
nsor	all	-22.22	-0.03		7	-22.25	
	-	$\langle T_{NN} angle_{\Lambda}$	$\langle T_{NN} \rangle_{\Sigma}$			$\langle T_{NN} \rangle$	
	all	20.25	0.23	$\Lambda N - 2$	LIN I	20.48	
		$\langle T_{\Lambda - NN} angle$	$\langle T_{\Sigma = NN} \rangle$			$\langle T_{Y \sim NN} angle$	
	all	2.18	0.79			2.97	

2907

FY calculation with and w/o 3NF Three nucleon force does not change the B_{Λ} so much.

Solution A. Nogga, et al., PRL88, 172501 (2002). TABLE II. NN and 3N interaction dependence of the ${}^{4}_{\Lambda}$ He SE's E_{sep}^{Λ} and the 0⁺-1⁺ splitting Δ . We show results for different combinations of YN, NN, and 3N forces (YNF, NNF, and 3NF). All energies are given in MeV.

YNF	NNF	3NF	$E_{\rm sep}^{\Lambda}(0^+)$	$E_{\rm sep}^{\Lambda}(1^+)$	Δ
SC97e	Bonn B		1.66	0.80	0.84
SC97 <i>e</i>	Nijm 93		1.54	0.72	0.79
SC97 <i>e</i>	Nijm 93	ТМ	1.56	0.70	0.82
SC89	Bonn B		2.25		
SC89	Nijm 93		2.14	0.02	2.06
SC89	Nijm 93	TM	2.19		

ハイペロンポテンシャルは、NNと 切り離して決めることはできない。

172501-2

Lattice QCD calculation

Baryon-baryon potentials from lattice QCD

¹Center for Computational Science, University of Tsukuba, Japan
 ²Yukawa Institute for Theoretical Physics, Kyoto University, Japan
 ³Department of Physics, University of Tokyo, Japan
 ⁴Theoretical Research Division, Nishina Center RIKEN, Japan
 ⁵College of Bioresouce Science, Nihon University, Japan
 ⁶Strangeness Nuclear Physics, Nishina Center RIKEN, Japan

Outline

Introduction

Formulation --- potential (central + tensor)
 Numerical results:

• M force $(V_{c} + V_{T})$

 $\otimes N\Sigma$ (I=3/2) force $(V_{c} + V_{T})$

Recent work on lattice QCD
 Stochastic variational calculation of 4He with using a lattice potential
 Summary and outlook

Introduction:

Study of hyperon-nucleon (YN) and hyperonhyperon (YY) interactions is one of the important subjects in the nuclear physics.

[®]Structure of the neutron-star core,

Hyperon mixing, softning of EOS, inevitable strong repulsive force,

H-dibaryon problem,

[®]To be, or not to be,

The project at J-PARC:

Explore the multistrange world,

However, the phenomenological description of YN and YY interactions has large uncertainties, which is in sharp contrast to the nice description of phenomenological NN potential.

Introduction:

Study of hyperon-nucleon (YN) and hyperonhyperon (YY) interactions is one of the important subjects in the nuclear physics.

Structure of the neutron-star core,

[®]Hyperon mixing, softning of EOS, inevitable strong Strange quark star repulsive for [®]H-dibaryon problem To be, or not t n, p, e, µ Outer (A+e) u, d, s, e The project at J-PAR & Inner (A+n+e) Crust u, d, s Sectore the phenome sector of the phenome $\pi^0, \pi^-, K^- \mid \Sigma, \Lambda, \Xi$ V Nettorstarnit n, p, e, µ n, p, e, *µ* which is in sharp of scription of phenor R~10 km

Formulation
Lattice QCD simulation

$$L = -\frac{1}{4} G^{a}_{\mu\nu} G^{a\mu\nu} + \bar{q} \gamma^{\mu} (i \partial_{\mu} - g t^{a} A^{a}_{\mu}) q - m \bar{q} q$$

$$\langle O(\bar{q}, q, U) \rangle = \int dU d\bar{q} dq e^{-S(\bar{q}, q, U)} O(\bar{q}, q, U)$$

$$= \int dU \det D(U) e^{-S_{\nu}(U)} O(D^{-1}(U))$$

$$= \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} O(D^{-1}(U_{i}))$$

Formulation
Lattice QCD simulation

$$L = -\frac{1}{4} G^{a}_{\mu\nu} G^{a\mu\nu} + \bar{q} \gamma^{\mu} (i \partial_{\mu} - g t^{a} A^{a}_{\mu}) q - m \bar{q} q$$

$$\langle O(\bar{q}, q, U) \rangle = \int dU d\bar{q} dq e^{-S(\bar{q}, q, U)} O(\bar{q}, q, U)$$

$$= \int dU \det D(U) e^{-S_{\nu}(U)} O(D^{-1}(U))$$

$$= \lim_{N \to \infty} \frac{1}{N} \sum_{i=1}^{N} O(D^{-1}(U_{i}))$$

Formulation i) basic procedure: asymptotic region --> phase shift ii) advanced (HAL's) pro-/ cedure: interacting region --> potential 200

Luscher, NPB354, 531 (1991). Aoki, et al., PRD71, 094504 (2005).

Calculate the scattering state

HAL formulation ii) advanced procedure: make better use of the lattice output ! (wave function) interacting region --> potential Ishii, Aoki, Hatsuda, PRL99, 022001 (2007); ibid., arXiv:0805.2462[hep-ph].

NOTE:

> Potential is not a direct experimental observable.
> Potential is a useful tool to give (and to reproduce)
the physical quantities. (e.g., phase shift)

Numerical results

Full QCD calculations by using N_F=2+1 PACS-CS gauge configurations:

S. Aoki, et al., (PACS-CS Collaboration), PRD79, 034503 (2009), arXiv:0807.1661 [hep-lat].
Iwasaki gauge action at β=1.90 on 32³ × 64 lattice
O(a) improved Wilson quark action
1/a = 2.17 GeV (a = 0.0907 fm)

$(\kappa_{ud})_{N_{\rm conf}}$	m_{π}	$m_{ ho}$	m_K	m_{K^*}	m_N	m_{Λ}	m_{Σ}	m_{Ξ}	
2+1 flavor QCD by PACS-CS with $\kappa_s = 0.13640$ @ present calc (Dirichlet BC along T)									
$(0.13700)_{609}$	700.0(4)	1108(3)	785.8(3)	1159(2)	1573(4)	1632(4)	1650(5)	1700(4)	
(0.12727) ₄₈₁	567.5(0)	1000(1)	723.7(7)	1001(0) 1001(1)	100.6(0)	1191(1)	1519(5) 1/(15(7))	1599(1)	
Exp.	135	770	494	892	940	1116	1190	1320	

NN potential

V_C(AN; 1S0)

- $\{27\}+\{8s\}$
- Similar to NN (1S0)
- Sizable contribution from time-derivative part

 $V_{C}(\Lambda N; 3S1-3D1)$

• $\{10*\}+\{8a\}$

• Sizable attractive contribution from time-derivative part

 $V_{-}(\Lambda N; 3S1-3D1)$

- Weaker tensor force than NN
- Small contribution from time-derivative part

ΣN(I=3/2) potential

V_c(ΣN(I=3/2); 1S0)

• {27}

• Similar to NN (1S0) (as well as Lambda-N (1S0))

• Sizable contribution from time-derivative part

V_c(ΣN(I=3/2); 3S1-3D1)

• {10}

• Repulsive potential (consistent with quark model)

sizable repulsive contribution from time-derivative part

V₇(ΣN(I=3/2); 3S1-3D1)

- Weak tensor force
- Small contribution from time-derivative part

Scattering phase shifts

Proton-Lambda scattering (preliminary)

Parametrized potential

Phase shift

(Hyper-)Nuclear few-body problem

Stochastic variational calculation of 4He with using a lattice potential

For NN potential, we use Inoue-san's SU(3) potential at the lightest quark mass(m_ps = 469 MeV), which has been reported to have a 4N bound state (about 5.1MeV) within a tensor-included effective central potential; NPA881, 28-43 (2011).

Stochastic variational calculation of 4He with using a lattice potential

The wave function of A-body system is described by a linear combination of basis functions as

$$\Psi = \sum_{k=1}^{K} c_k \varphi_k, \quad \text{with} \quad \varphi_k = \mathcal{A}\{G(\mathbf{x}; A_k) [\theta_{(LL')_k}(\mathbf{x}; (uu')_k), \chi_{S_k}]_{JM} \eta_{kIM_I}\}, \quad (11)$$

where c_k is the linear variational parameter determined by the variational principle, \mathcal{A} is antisymmetrizer for identical particles. χ_{S_k} (η_{kIM_I}) is the spin (isospin) function of the system. $G(\mathbf{x}; A_k)$ is the correlated Gaussian function which is given by

$$G(\mathbf{x}; A_k) = \exp\left\{-\frac{1}{2}\sum_{i< j}^A \alpha_{kij} (\mathbf{r}_i - \mathbf{r}_j)^2\right\} = \exp\left\{-\frac{1}{2}\sum_{i,j=1}^{A-1} A_{kij} \mathbf{x}_i \cdot \mathbf{x}_j\right\}.$$
(12)

Stochastic variational calculation of 4He with using a lattice potential

A set of relative coordinates $\{\mathbf{x}_1, \dots, \mathbf{x}_{A-1}\}$ and the center-of-mass coordinate \mathbf{x}_A are given by a linear transformation of single particle coordinates $\{\mathbf{r}_1, \dots, \mathbf{r}_A\}$ such as

$$\mathbf{x}_i = \sum_{j=1}^A U_{ij} \mathbf{r}_j, \qquad (i = 1, \cdots, A).$$
(13)

In order to obtain the accurate solution of the four-nucleon bound state with explicitly utilizing the the tensor potential, we consider nonzero orbital angular momentum states $(L, S)J^{\pi} = (1, 1)0^+$ and $(2, 2)0^+$ in addition to the $(0, 0)0^+$ configuration. We employ the global vector representation[11] for these nonzero orbital angular momentum states. Therefore, the angular part of the basis function is given by

$$\theta_{(LL')_k}(\mathbf{x};(uu')_k) = v_k^{L_k} v_k'^{L'_k} [Y_{L_k}(\hat{\mathbf{v}}_k) \times Y_{L'_k}(\hat{\mathbf{v}}'_k)]_{L_k}, \qquad \left(\begin{array}{c} \mathbf{v} \\ \mathbf{v}' \end{array}\right)_k = \sum_{i=1}^{A-1} \mathbf{x}_i \left(\begin{array}{c} u \\ u' \end{array}\right)_{ki}. \tag{14}$$

The validity of the present choice of basis function is examined for several realistic NN potentials[11]. The A_{kij} and $(u, u')_{ki}$ are the nonlinear variational parameters which are determined by the stochastic variational method[12].

Results of few-body calculation

(MeV)

Inputs:

- m=1161.0 MeV,
- hbar c = 197.3269602 MeV fm
- hbar c/e² = 137.03599976
- V_NN is treated as a Serber-type potential.
- Results:
 - B(4He)=4.37 MeV (w/ Coulomb)
 - Probabilities of (S, P, D) waves = (98.6%, 0.003%, 1.3%)
 - cf. roughly speaking (S,P,D)~(<90%, <0.1%, >10%) for a realistic NN force
 - B(4He)=5.09 MeV (w/o Coulomb)
 - Probabilities of (S, P, D) waves = (98.6%, 0.003%, 1.4%)

Results of few-body calculation

Inputs:

- m=1161.0 MeV,
- hbar c = 197.3269602 MeV fm •
- hbar c/ $e^2 = 137.03599976$ •
- V NN is treated as a Serber-type • potential.
- ★ Results:
 - B(4He)=4.37 MeV (w/ Coulomb)
 - Probabilities of
 - (S, P, D) waves
 - = (98.6%, 0.003%, 1.3%)
 - I also calculate the correlation . function.

r (fm)

10

8

0.05

0.00

0

2

Results when we cut off the tensor potntial

Inputs:

- m=1161.0 MeV,
- hbar c = 197.3269602 MeV fm
- hbar c/e² = 137.03599976
- V_NN is treated as a Serber-type potential with just cutting off the tensor part.
- Results:
 - B(4He)=1.61 MeV (w/ Coulomb)
 - Probabilities of (S, P, D) waves = (100%, 0%, 0%)
 - cf. roughly speaking (S,P,D)~(<90%, <0.1%, >10%) for a realistic NN force
 - B(4He)=2.25 MeV (w/o Coulomb)
 - (Probabirity of each component is almost same as the case including Coulomb)

(1) Lattice QCD calculation for hyperon potentials toward the physical point calculation.

Lambda-N, Sigma-N: central, tensor

(2) (hyper-)nuclear few-body calculation of stochastic variational method

(3) recent misc work
 (萌芽的研究プロジェクトに関連していそうなその他の報告)
 萌芽的研究プロジェクト

分野5の計算科学技術推進体制構築における萌芽的研究プロジェクト 支援は将来の主要な研究開発課題になるべきプロジェクトを開拓するこ とを目的として行っているものです。アイデアの豊富な若手研究者に自 由な発想で研究する機会を与え、分野全体で新しい研究を育てることを 目指しています。このため研究支援チームの皆さんには、ユーザからの アルゴリズム・コーディング等の支援要請への対応・共通コード作成と 同時に、新しい発想に基づく萌芽的研究課題に取り組むことを推奨して きました。萌芽的研究プロジェクトの一覧は以下の通りです。

Recent work

(1) Porting the C++ program to Bridge++, which can calculate the four-point correlation function of Lambda-Nucleon system. The C++ program also has been used to study other baryon-baryon potential for student.

(2) Improve the computational performance by implementing the hybrid parallel program with MPI and OpenMP

(3) Generalize the target system to various baryon-baryon Channels (e.g., 52 channels would be required to study the complete set of baryon-baryon potentials on 2+1 QCD calculation)

(4) In this approach, the number of iterations to obtain the four-point correlation function is remarkably smaller than the numbers given in the unified contraction algorithm[2]

[1] H.N. Pos(LAT2013)426;(LAT2008)156;(LAT2009)152;(LAT2011)167. [2] Doi and Endres, Comput. Phys. Commun. 184, 117 (2013).

	Effec	tive	block	algor	ithm	to ca	Icula	te the	
	(pn pn	(4.1)							
	$(p\Lambda \overline{p}, $	(4.2)							
	$(\Lambda\Lambda\overline{\Lambda})$ $(p\Xi^{-1})$ $(n\Xi^{0}\overline{\Lambda})$ $(\Sigma^{+}\Sigma^{-1})$ $(\Sigma^{0}\Sigma^{0})$	$egin{array}{c} \overline{\Lambda} &\langle \Lambda \Lambda \overline{p} \\ \overline{\Lambda} \overline{\Lambda} angle, &\langle p \Xi^{-} \rangle \\ \overline{\Lambda} \overline{\Lambda} angle, &\langle n \Xi^{0} \overline{p} \\ \overline{-} \overline{\Lambda} \overline{\Lambda} angle, &\langle \Sigma^{+} \Sigma \rangle \\ \overline{-} \overline{\Lambda} \overline{\Lambda} angle, &\langle \Sigma^{0} \Sigma^{0} \\ \langle \Sigma^{0} \Lambda \overline{\rho} \rangle \end{array}$	$\begin{array}{ll} \overline{\Xi^{-}}\rangle, & \langle \Lambda A \\ \overline{p\Xi^{-}}\rangle, & \langle p\Xi \\ \overline{\Sigma\Xi^{-}}\rangle, & \langle n\Xi \\ \overline{p\Xi^{-}}\rangle, & \langle \Sigma^{+} \\ \overline{p\Xi^{-}}\rangle, & \langle \Sigma^{0} \\ \overline{p\Xi^{-}}\rangle, & \langle \Sigma^{0} \\ \end{array}$	$ \begin{array}{l} \sqrt{n\Xi^{0}} \rangle, & \langle \Lambda \\ \overline{n\Xi^{0}} \rangle, & \langle p \rangle \\ \sqrt{n\Xi^{0}} \rangle, & \langle n \rangle \\ \Sigma^{-} \overline{n\Xi^{0}} \rangle, & \langle \Sigma \\ \Sigma^{0} \overline{n\Xi^{0}} \rangle, & \langle \Sigma \\ \overline{\Lambda n\Xi^{0}} \rangle, & \langle \Sigma \rangle \end{array} $	$\begin{array}{l} \Lambda\overline{\Sigma^{+}\Sigma^{-}}),\\ \Xi^{-}\overline{\Sigma^{+}\Sigma^{-}}),\\ \Xi^{0}\overline{\Sigma^{+}\Sigma^{-}}),\\ ^{+}\Sigma^{-}\overline{\Sigma^{+}\Sigma^{-}}),\\ ^{0}\Sigma^{0}\overline{\Sigma^{+}\Sigma^{-}}),\\ ^{0}\Lambda\overline{\Sigma^{+}\Sigma^{-}}\rangle, \end{array}$	$\begin{array}{l} \langle \Lambda\Lambda\overline{\Sigma^{0}\Sigma^{0}}\rangle,\\ \langle p\Xi^{-}\overline{\Sigma^{0}\Sigma^{0}}\rangle,\\ \langle n\Xi^{0}\overline{\Sigma^{0}\Sigma^{0}}\rangle,\\ \langle \Sigma^{+}\Sigma^{-}\overline{\Sigma^{0}\Sigma^{0}}\rangle,\\ \langle \Sigma^{0}\Sigma^{0}\overline{\Sigma^{0}\Sigma^{0}}\rangle, \end{array}$	$\langle p \Xi^{-} \overline{\Sigma^{0} \Lambda} \rangle$ $\langle n \Xi^{0} \overline{\Sigma^{0} \Lambda} \rangle$ $\langle \Sigma^{+} \Sigma^{-} \overline{\Sigma^{0} \Lambda} \rangle$ $\langle \Sigma^{0} \Lambda \overline{\Sigma^{0} \Lambda} \rangle$	$\overline{\Lambda}$), $\frac{)}{\Lambda}$, (4.3) $\overline{\Lambda}$,	
	$(\Xi^{-}\Lambda)$ $(\Sigma^{-}\Xi^{+})$ $(\Sigma^{0}\Xi^{-})$	$\overline{\Xi^{-}\Lambda}$), $\langle \Xi^{-}\Lambda \rangle$ $\overline{\Xi^{-}\Lambda}$), $\langle \Sigma^{-}\Xi$ $\overline{\Xi^{-}\Lambda}$), $\langle \Sigma^{0}\Xi$	$\begin{array}{l} & \Lambda \overline{\Sigma^{-}\Xi^{0}} \rangle, \langle \Xi \\ \Xi^{0} \overline{\Sigma^{-}\Xi^{0}} \rangle, \langle \Sigma \\ \Xi^{-} \overline{\Sigma^{-}\Xi^{0}} \rangle, \langle \Sigma \\ \Xi^{-} \overline{\Sigma^{-}\Xi^{0}} \rangle, \langle \Sigma \\ \Sigma^{-} \overline{\Sigma^{-}\Xi^{0}} \rangle, \langle$	$\Sigma^{-}\Lambda \overline{\Sigma^{0}\Sigma^{-}}\rangle,$ $\Sigma^{-}\Sigma^{0}\overline{\Sigma^{0}\Sigma^{-}}\rangle,$ $\Sigma^{0}\Sigma^{-}\overline{\Sigma^{0}\Sigma^{-}}\rangle,$				(4.4)	
	(E-E	$\overline{\Xi^{-}\Xi^{0}}$).						(4.5)	
*	Elapse times to calculate the 52 matrix correlators (MPI+OpenMP)								
*	[tasks_per_node] x [OMP_NUM_THREADS]								
*		64x1	32x2	16x4	8x4	4x8	2x16	1x32	
*	Step-1	0:14	0:16	0:09	0:09	0:07	0:06	0:06	
*	Step-2	0:10	0:11	0:12	0:12	0:12	0:13	0:14	