QCD thermodynamics from shifted boundary conditions

Takashi Umeda

Lattice QCD at finite temperature and density, KEK, Ibaraki, Japan, 20-22 January 2014
Contents of this talk

- Introduction
 - finite T with Wilson quarks

- Fixed scale approach
 - quenched results
 - Nf=2+1 QCD results

- Shifted boundary conditions
 - EOS
 - Tc
 - Beta-functions (entropy density)

- Summary
Quark Gluon Plasma in Lattice QCD

Observables in Lattice QCD

- Phase diagram in \((T, \mu, m_{ud}, m_s)\)
- Critical temperature
- Equation of state \((\epsilon/T^4, p/T^4, \ldots)\)
- Hadronic excitations
- Transport coefficients
- Finite chemical potential
- etc...

http://www.gsi.de/fair/experiments/

KEK on finite T & mu QCD

T. Umeda (Hiroshima)
QCD Thermodynamics with Wilson quarks

Most \((T, \mu \neq 0)\) studies at \(m_{\text{phys}}\) are done with Staggered-type quarks

4th-root trick to remove unphysical "tastes"
\[\rightarrow \text{non-locality "Validity is not guaranteed"} \]

It is important to cross-check with
theoretically sound lattice quarks like Wilson-type quarks

WHOT-QCD collaboration is investigating
QCD at finite \(T\) & \(\mu\) using Wilson-type quarks

Review on WHOT-QCD studies:
S. Ejiri, K. Kanaya, T. Umeda for WHOT-QCD Collaboration,
Recent studies on QCD Thermodynamics

Non-Staggered quark studies at T>0

- Domain-Wall quarks

- Overlap quarks

- twisted mass quarks

- Wilson quarks
 S. Borsanyi et al. (Wuppertal), JHEP08 (2012) 126.

Fixed scale approach is adopted to study T>0
Fixed scale approach to study QCD thermodynamics

Conventional fixed Nt approach
Temperature \(T = \frac{1}{(N_t a)} \) is varied by \(a \) at fixed \(N_t \)

- Coupling constants are different at each \(T \)
 - To study Equation of States
 - \(T=0 \) subtractions at each \(T \)
 - beta-functions at each \(T \)
 - Line of Constant Physics (for full QCD)

\[
\frac{a_{\text{max}}}{a_{\text{min}}} = \frac{T_{\text{max}}}{T_{\text{min}}} > 3
\]

These are done in \(T=0 \) simulations
- larger space-time volume
- smaller eigenvalue in Dirac op.
\(\rightarrow \) larger part of the simulation cost

\(a \) : lattice spacing
\(N_t \) : lattice size in t-direction
Fixed scale approach to study QCD thermodynamics

- Fixed scale approach
 - Temperature $T=1/(N_t a)$ is varied by N_t at fixed a

 - Coupling constants are common at each T
 - To study Equation of States
 - $T=0$ subtractions are common
 - beta-functions are common
 - Line of Constant Physics is automatically satisfied

 - Cost for $T=0$ simulations can be largely reduced

 - However possible temperatures are restricted by integer N_t
 - critical temperature T_c
 - EOS

a : lattice spacing
N_t : lattice size in t-direction
We propose the T-integration method to calculate the EOS at fixed scales

T. Umeda et al. (WHOT-QCD), Phys. Rev. D79 (2009) 051501

Our method is based on the trace anomaly (interaction measure),

$$\frac{\epsilon - 3p}{T^4} = \left(\frac{N_t^3}{N_s^3}\right) a \frac{d\beta}{da} \left\langle \frac{dS}{d\beta} \right\rangle_{sub}$$

and the thermodynamic relation.

$$\frac{\epsilon - 3p}{T^4} = T \frac{\partial (p/T^4)}{\partial T}$$

$$\Rightarrow \frac{p}{T^4} = \int_0^T dT' \frac{\epsilon - 3p}{T'^5}$$
Test in quenched QCD

- Our results are roughly consistent with previous results.

- at higher T
 lattice cutoff effects
 ($aT \sim 0.3$ or higher)

- at lower T
 finite volume effects
 $V > (2\text{fm})^3$ is necessary $T < T_c$

Anisotropic lattice is a reasonable choice

[+] G. Boyd et al., NPB469, 419 (1996)
EOS for $N_f=2+1$ improved Wilson quarks

\[S = S_g + S_q \]

\[S_g = -\beta \left\{ \sum_{x,\mu > \nu} c_0 W_{\mu \nu}^{1 \times 1}(x) + \sum_{x,\mu,\nu} c_1 W_{\mu \nu}^{1 \times 2}(x) \right\} \]

\[S_q = \sum_{f=u,d,s} \sum_{x,y} \bar{q}_f^x D_{x,y} q_f^y \]

\[D_{x,y} = \delta_{x,y} - \kappa_f \sum_{\mu} \left\{ (1 - \gamma_\mu) U_{x,\mu} \delta_{x+\tilde{\mu},y} + (1 + \gamma_\mu) U_{x-\tilde{\mu},\mu}^\dagger \delta_{x-\tilde{\mu},y} \right\} - \delta_{x,y} c_{SW} \kappa_f \sum_{\mu > \nu} \sigma_{\mu \nu} F_{\mu \nu} \]

\[\frac{\epsilon - 3p}{T^4} = \frac{N_t^3}{N_s^3} \left(a \frac{\partial \beta}{\partial a} \left\langle \frac{\partial S}{\partial \beta} \right\rangle_{sub} + a \frac{\partial \kappa_{ud}}{\partial a} \left\langle \frac{\partial S}{\partial \kappa_{ud}} \right\rangle_{sub} + a \frac{\partial \kappa_s}{\partial a} \left\langle \frac{\partial S}{\partial \kappa_s} \right\rangle_{sub} \right) \]

\[\left\langle \frac{\partial S}{\partial \beta} \right\rangle = N_s^3 N_t \left(- \sum_{x,\mu > \nu} c_0 W_{\mu \nu}^{1 \times 1}(x) + \sum_{x,\mu,\nu} c_1 W_{\mu \nu}^{1 \times 2}(x) \right) + N_f \frac{\partial c_{SW}}{\partial \beta} \kappa_f \left\langle \sum_{x,\mu > \nu} \text{Tr}^{(c,s)} \sigma_{\mu \nu} F_{\mu \nu}(D^{-1})_{x,x} \right\rangle \]

\[\left\langle \frac{\partial S}{\partial \kappa_f} \right\rangle = N_f N_s^3 N_t \left(\sum_{x,\mu} \text{Tr}^{(c,s)} \left\{ (1 - \gamma_\mu) U_{x,\mu} (D^{-1})_{x+\tilde{\mu},x} + (1 + \gamma_\mu) U_{x-\tilde{\mu},\mu}^\dagger (D^{-1})_{x-\tilde{\mu},x} \right\} \right) + c_{SW} \left\langle \sum_{x,\mu > \nu} \text{Tr}^{(c,s)} \sigma_{\mu \nu} F_{\mu \nu}(D^{-1})_{x,x} \right\rangle \]

Noise method (\#noise = 1 for each color & spin indices)
T=0 & T>0 configurations for $N_f=2+1$ QCD

- **T=0 simulation:** on $28^3 \times 56$
 - RG-improved glue + NP-improved Wilson quarks
 - $V \sim (2 \text{ fm})^3$, $a \approx 0.07 \text{ fm}$, ($m_\pi \sim 634 \text{ MeV}$, $\frac{m_\pi}{m_\rho} = 0.63$, $\frac{m_{\eta_s}}{m_\phi} = 0.74$)
 - configurations available on the ILDG/JLDG

- **T>0 simulations:** on $32^3 \times N_t$ ($N_t=4, 6, \ldots, 14, 16$) lattices
 - RHMC algorithm, same coupling parameters as T=0 simulation

KEK on finite T & mu QCD

T. Umeda (Hiroshima)
Equation of State in $N_f=2+1$ QCD

T. Umeda et al. (WHOT-QCD)

- T-integration

$$\frac{p}{T^4} = \int_0^T dT' \frac{\epsilon - 3p}{T'^5}$$

is performed by Akima Spline interpolation.

- A systematic error for beta-functions

- Numerical error propagates until higher temperatures
Summary on Fixed scale approach

Fixed scale approach for EOS

- EOS (p, e, s, ...) by T-integral method
- Cost for T=0 simulations can be largely reduced
- possible temperatures are restricted by integer N_t
- beta-functions are still a burden

- Some groups adopted the approach
 - S. Borsanyi et al. (Wuppertal), JHEP08 (2012) 126.

- Physical point simulation with Wilson quarks is on going
Contents of this talk

- Introduction
 - finite T with Wilson quarks

- Fixed scale approach
 - quenched results
 - $N_f=2+1$ QCD results

- Shifted boundary conditions
 - EOS
 - T_c
 - Beta-functions (entropy density)

- Summary
Shifted boundary conditions

Thermal momentum distribution from path integrals with shifted boundary conditions

New method to calculate thermodynamic potentials (entropy density, specific heat, etc.)

The method is based on the partition function

\[
Z(\vec{z}) = Tr \{ e^{-L_0 \hat{H}} e^{i\hat{p}\vec{z}} \}
\]

which can be expressed by Path-integral with shifted boundary condition

\[
\phi(L_0, \vec{x}) = \pm \phi(0, \vec{x} + \vec{z})
\]

- L. Giusti and H. B. Meyer, JHEP 01 (2013) 140
Shifted boundary conditions

Due to the Lorentz invariance of the theory, the free-energy depends on L_0 and the boundary shift \tilde{z} only through the combination $\sqrt{L_0^2 + z^2}$

$$f(L_0, \tilde{z}) = f(\sqrt{L_0^2 + z^2}, 0)$$

$$\phi(L_0, \tilde{x}) = \pm \phi(0, \tilde{x} + \tilde{z})$$

$$\tilde{z} = a\tilde{n}$$
Shifted boundary conditions

By using the shifted boundary
various T’s are realized with the same lattice spacing

T resolution is largely improved
while keeping advantages of the fixed scale approach

Figure 3: Inverse temperature values that become accessible with the use of shifted boundary conditions at a fixed lattice spacing \(a \) and for different values of \(L_0/a \). The inverse temperatures accessible with a shift in a single direction, \(\xi = (\xi_1, 0, 0) \), are marked by a double circle.

\[
\beta = \frac{1}{T}, \quad \tilde{z} = L_0 \tilde{\xi}
\]
Test in quenched QCD

Simulation setup
- quenched QCD
- $\beta=6.0$
 - $a \sim 0.1\text{fm}$
- $32^3 \times N_t$ lattices, $N_t = 3, 4, 5, 6, 7, 8, 9$ and 32 ($T=0$)
 - $T_c(N_f=0) \sim 2 \times T_c(N_f=2+1, m_{\text{phys}})$
- boundary condition
 - spatial: periodic boundary condition
 - temporal: shifted boundary condition
 - $U_\mu(L_0, \vec{x}) = U_\mu(0, \vec{x} + \vec{z})$
- heat-bath algorithm (code for SX-8R)
 - only “even-shift” to keep even-odd structure
 - e.g. $\frac{\vec{z}}{a} = (0,0,0), (1,1,0), (2,0,0), (2,1,1), (2,2,0), (3,1,0), ...$
Choice of boundary shifts

\[U_\mu (L_0, \vec{x}) = U_\mu (0, \vec{x} + \vec{z}) \quad \vec{z} = a\vec{n} \]

| n^2 | n_1 | n_2 | n_3 | e/o | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 |
|-----|-----|-----|-----|-----|----|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 10.00 | 9.00 | 8.00 | 7.00 | 6.00 | 5.00 | 4.00 | 3.00 |
| 2 | 1 | 1 | 0 | 0 | 10.10 | 9.11 | 8.12 | 7.14 | 6.16 | 5.20 | 4.24 | 3.32 |
| 4 | 2 | 0 | 0 | 0 | 10.20 | 9.22 | 8.25 | 7.28 | 6.32 | 5.39 | 4.47 | 3.61 |
| 6 | 2 | 1 | 1 | 0 | 10.30 | 9.33 | 8.37 | 7.42 | 6.48 | 5.57 | 4.69 | 3.87 |
| 8 | 2 | 2 | 0 | 0 | 10.39 | 9.43 | 8.49 | 7.55 | 6.63 | 5.74 | 4.90 | 4.12 |
| 10 | 3 | 1 | 0 | 0 | 10.49 | 9.54 | 8.60 | 7.68 | 6.78 | 5.92 | 5.10 | 4.36 |
| 12 | 2 | 2 | 2 | 0 | 10.58 | 9.64 | 8.72 | 7.81 | 6.93 | 6.08 | 5.29 | 4.58 |
| 14 | 3 | 2 | 1 | 0 | 10.68 | 9.75 | 8.83 | 7.94 | 7.07 | 6.24 | 5.48 | 4.80 |
| 16 | 4 | 0 | 0 | 0 | 10.77 | 9.85 | 8.94 | 8.06 | 7.21 | 6.40 | 5.66 | 5.00 |
| 18 | 3 | 3 | 0 | 0 | 10.86 | 9.95 | 9.06 | 8.19 | 7.35 | 6.56 | 5.83 | 5.20 |
| 18 | 4 | 1 | 1 | 0 | 10.86 | 9.95 | 9.06 | 8.19 | 7.35 | 6.56 | 5.83 | 5.20 |
| 20 | 4 | 2 | 0 | 0 | 10.95 | 10.05 | 9.17 | 8.31 | 7.48 | 6.71 | 6.00 | 5.39 |
| 22 | 3 | 3 | 2 | 0 | 11.05 | 10.15 | 9.27 | 8.43 | 7.62 | 6.86 | 6.16 | 5.57 |
| 24 | 4 | 2 | 2 | 0 | 11.14 | 10.25 | 9.38 | 8.54 | 7.75 | 7.00 | 6.32 | 5.74 |
| 26 | 4 | 3 | 1 | 0 | 11.22 | 10.34 | 9.49 | 8.66 | 7.87 | 7.14 | 6.48 | 5.92 |
| 26 | 5 | 1 | 0 | 0 | 11.22 | 10.34 | 9.49 | 8.66 | 7.87 | 7.14 | 6.48 | 5.92 |
| 30 | 5 | 2 | 1 | 0 | 11.40 | 10.54 | 9.70 | 8.89 | 8.12 | 7.42 | 6.78 | 6.24 |
| 32 | 4 | 4 | 0 | 0 | 11.49 | 10.63 | 9.80 | 9.00 | 8.25 | 7.55 | 6.93 | 6.40 |
| 34 | 4 | 3 | 3 | 0 | 11.58 | 10.72 | 9.90 | 9.11 | 8.37 | 7.68 | 7.07 | 6.56 |
Trace anomaly \((e-3p)/T^4\)

\[
\frac{\epsilon - 3p}{T^4} = \left(\frac{1}{VT^3} \right) \frac{d}{da} \left(\frac{dS}{d\beta} \right)_{sub}
\]

Reference data
S. Borsanyi et al., JHEP 07 (2012) 056
Precision SU(3) lattice thermodynamics for a large temperature range

- \(N_s/N_t = 8\) near \(T_c\)
- small \(N_t\) dependence at \(T>1.3T_c\)
- peak height at \(N_t=6\) is about 7% higher than continuum value
- assuming \(T_c=293\)MeV

The continuum values referred as “continuum”
Trace anomaly \(\frac{\varepsilon - 3p}{T^4} \)

\[
\frac{\varepsilon - 3p}{T^4} = \left(\frac{1}{VT^3} \right) a \frac{d\beta}{da} \left\langle \frac{dS}{d\beta} \right\rangle_{sub}
\]

no shifted boundary

\(\beta \)-function: Boyd et al. (1998)
Trace anomaly \((\varepsilon - 3p)/T^4 \)

\[
\frac{\varepsilon - 3p}{T^4} = \left(\frac{1}{VT^3} \right) a \frac{d\beta}{da} \left\{ \frac{dS}{d\beta} \right\}_{\text{sub}}
\]

\[
T = \frac{1}{a \sqrt{N_t^2 + \vec{n}^2}} \quad V = \prod_{i=1}^{3} \frac{aN_{s_i}}{\sqrt{1 + \left(\frac{n_{s_i}}{N_t} \right)^2}}
\]

\(w/o \) shifted boundary

\(w/ \) shifted boundary

beta-function: Boyd et al. (1998)

KEK on finite T & mu QCD

T. Umeda (Hiroshima)
Lattice artifacts from shifted boundaries

- Lattice artifacts are suppressed at larger shifts
- Non-interacting limit with fermions should be checked

Figure 2: Pressure at finite lattice spacing for the SU(N) Yang–Mills theory in the non-interacting limit. The discretization used is the Wilson action and the 'clover' form of the lattice field strength tensor. The inverse temperature is given by $\beta = L_0 \sqrt{1 + \xi^2}$, and a is the lattice spacing.
Critical temperature T_c

Polyakov loop is difficult to be defined because of misalignment of time and compact directions.

Dressed Polyakov loop

E. Bilgici et al.,

Polyakov loop defined with light quarks

$$\Sigma_n(m, V) = \int_0^{2\pi} \frac{d\phi}{2\pi} e^{-i\phi n} \frac{1}{V} \langle Tr[(m + D_\phi)^{-1}] \rangle_G$$

KEK on finite T & mu QCD

FIG. 2 (color online). The dressed Polyakov loop at $m = 100$ MeV in units of GeV3 as a function of the temperature T in MeV.
Critical temperature T_c

Plaquette value

$$\langle P \rangle = \frac{1}{6N_s^3N_t} \sum_P \langle 1 - \frac{1}{3}ReTrU_P \rangle$$

Plaquette susceptibility

$$\chi_P = N_s^3N_t \left(\langle P^2 \rangle - \langle P \rangle^2 \right)$$

Plaq. suscep. has a peak around $T = 293$ MeV
Beta-functions (in case of quenched QCD)

$$\frac{\epsilon - 3p}{T^4} = \left(\frac{1}{VT^3} \right) a \frac{d\beta}{da} \left\langle \frac{dS}{d\beta} \right\rangle_{sub}$$

In the fixed scale approach, beta-func at the simulation point is required.

However, T=0 simulations near the point are necessary to calculate the beta-function.

We are looking for new methods to calculate beta-function:
- Reweighting method
- Shifted boundary condition
Entropy density from shifted boundaries

Entropy density s/T^3
from the cumulant of the momentum distribution

$$\frac{s(T)}{T^3} = \lim_{a \to 0} \frac{2K(T, \vec{z}, a)}{|\vec{z}|^2T^5V}$$

$$K(T, \vec{z}, a) = -\ln \frac{Z(T, \vec{z}, a)}{Z(T, \vec{0}, a)}$$

$Z(T, \vec{z}, a)$: partition function with shifted boundary

where $\vec{z} = (0, 0, n_z a)$, n_z being kept fixed when $a \to 0$

FIG. 1 (color online). Scaling behavior of s/T^3; see Eq. (15). The Stefan-Boltzmann value reached in the high-T limit is also displayed.
Entropy density from shifted boundaries

- Entropy density at a temperature \(T_0\) by the new method with shifted b.c.
 \[s(T_0) \]

- Entropy density w/o beta-function by the T-integral method
 \[s(T)/a \frac{d\beta}{da} \]

\[
\frac{\epsilon - 3p}{T^4} = \left(\frac{N_t^3}{N_s^3} \right) \frac{d\beta}{da} \left\langle \frac{dS}{d\beta} \right\rangle_{sub} \\
\frac{p}{T^4} = \int_0^T dT' \frac{\epsilon - 3p}{T'^5} \]

\[Ts = \epsilon + p \]

Beta-func is determined by matching of entropy densities at \(T_0\)

FIG. 1 (color online). Scaling behavior of \(s/T^3\); see Eq. (15). The Stefan-Boltzmann value reached in the high-\(T\) limit is also displayed.
momentum distribution

\[
\frac{R(\vec{p})}{V} = \frac{Tr\{e^{-L_0\hat{H}}\hat{P}(\vec{p})\}}{Tr\{e^{-L_0\hat{H}}\}}
\]

\(L_0\) : Temporal extent

\(\hat{H}\) : Hamiltonian

\(\hat{P}(\vec{p})\) : projector onto states with total momentum \(p\)

The generating function \(K(z)\) of the cumulants of the mom. dist. is defined

\[
e^{-K(\vec{z})} = \frac{1}{V} \sum_{\vec{p}} e^{i\vec{p} \cdot \vec{z}} R(\vec{p})
\]

the cumulants are given by

\[
k\{2n_1,2n_2,2n_3\} = (-1)^{n_1+n_2+n_3+1} \frac{\partial^{2n_1}}{\partial z_1^{2n_1}} \frac{\partial^{2n_2}}{\partial z_2^{2n_2}} \frac{\partial^{2n_3}}{\partial z_3^{2n_3}} \frac{K(\vec{p})}{V} \bigg|_{\vec{z}=0}
\]
The generating func. $K(p)$ can be written with the partition function

$$e^{-K(p)} = \frac{Z(\vec{\tau})}{Z}$$

$$Z(\vec{\tau}) = Tr\{e^{-L_0 \hat{H} e^{i\vec{\tau} \vec{\theta}}}\}$$

$Z(z)$ can be expressed as a path integral with the field satisfying the shifted b.c.

By the Ward Identities, the cumulant is related to the entropy density “s”

$$k_{\{0,0,2\}} = T(\epsilon + p) = T^2 s$$

$$s = -\frac{1}{T^2} \lim_{V \to \infty} \frac{1}{V} \frac{d^2}{d\tau^2} \ln Z(\{0,0,\tau\})|_{\tau=0}$$

The specific heat and speed of sound can be also obtained in the method.
How to calculate $k_{\{0,0,2\}}$

Evaluation of $Z(z)/Z$ with reweighting method

$$\frac{Z(\bar{z})}{Z} = \prod_{i=1}^{n-1} \frac{Z(r_i)}{Z(r_{i+1})}$$

$$\bar{S}(U, r_i) = r_i S(U) + (1 - r_i) S(U^z)$$

$$\frac{Z(r_i)}{Z(r_{i+1})} = \langle e^{\bar{S}(U, r_{i+1}) - \bar{S}(U, r_i)} \rangle_{r_{i+1}}$$

$$K(\bar{z}) = -\ln \frac{Z(\bar{z})}{Z} = -\sum_{i=0}^{n-1} \ln \frac{Z(r_i)}{Z(r_{i+1})}$$

$$k_{\{2n_1, 2n_2, 2n_3\}} = (-1)^{n_1+n_2+n_3+1} \frac{\partial^{2n_1}}{\partial \bar{z}_1^{2n_1}} \frac{\partial^{2n_2}}{\partial \bar{z}_2^{2n_2}} \frac{\partial^{2n_3}}{\partial \bar{z}_3^{2n_3}} \frac{K(\bar{z})}{V} \bigg|_{\bar{z}=0}$$
Summary & outlook

We presented our study of the QCD Thermodynamics by using **Fixed scale approach** and **Shifted boundary conditions**

- **Fixed scale approach**
 - Cost for $T=0$ simulations can be largely reduced
 - First result in $N_f=2+1$ QCD with Wilson-type quarks

- **Shifted boundary conditions** are promising tool to improve the fixed scale approach
 - Fine resolution in Temperature
 - Suppression of lattice artifacts at larger shifts
 - T_c determination could be possible
 - New method to estimate beta-functions

- **Test in full QCD** $\rightarrow N_f=2+1$ QCD at the physical point
Thank you for your attention!
\[\epsilon_{\nu} \langle \partial_{\mu} T_{\mu \nu}(x) O_1 \cdots O_n \rangle = - \sum_{i=1}^{n} \langle O_1 \cdots \delta_{\epsilon} O_i \cdots O_n \rangle \]

\[O(y) = T_{0k}(y)\]

\[\partial_{0}^{x} \left\{ \langle \tilde{T}_{0k}(x_0) T_{0k}(y) \rangle - \delta(x_0 - y_0) \langle T_{kk} + \mathcal{L} \rangle \right\} = 0\]

\[\partial_{k}^{w} \left\{ \langle \tilde{T}_{0k}(w_0) T_{0k}(z) \rangle - \delta(w_k - z_k) \langle T_{00} + \mathcal{L} \rangle \right\} = 0\]

\[L_0 \langle \tilde{T}_{0k}(x_0) T_{0k}(y) \rangle - L_k \langle \tilde{T}_{0k}(w_k) T_{0k}(z) \rangle = \langle T_{00} \rangle - \langle T_{kk} \rangle\]

\[V \to \infty \quad L_0 \langle \tilde{T}_{0k}(x_0) T_{0k}(y) \rangle = \langle T_{00} \rangle - \langle T_{kk} \rangle = -(e + p) = -Ts\]

\[\langle \tilde{T}_{03}(x_0) T_{03}(y) \rangle = -k_{\{0,0,2\}}\]