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1. Introduction

What is CLE and what is it good for?
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• Euclidean LGT:

QFT path integral −→ partition function −→ simulation

(importance sampling)

• Averages with the partition function −→ averages over a

stochastic process in a discretized ”5-th” time (the CPU time ... ):

1. Monte Carlo (MC) simulations (Metropolis, Heat Bath, etc:

only statistical errors: no discretization dependence).

Needs a probability interpretation of the Boltzmann factor ↔
real action

2. Random Walk (RW) or Langevin Equation (LE) (discretization

errors, can be eliminated)

Does not need a probability interpretation of the Boltzmann

factor (in fact, not even an action!)
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(Real) Langevin Equation and Random Walk.

Here in discretized form, Ito calculus, ϑ: 5-th “time”, δϑ : “time” step;

for a field ϕ(x) (random variable), K[ϕ]: drift force,

Langevin equation:

δϕ(x;ϑ) ≡ ϕ(x;ϑ+ δϑ)− ϕ(x;ϑ) = K[ϕ(x;ϑ)] δϑ + η(x;ϑ)

〈η(x;ϑ)〉 = 0, 〈η(x;ϑ)η(x′;ϑ′)〉 = 2 δϑ δx,x′ δϑ,ϑ′

Random Walk:

δϕ(x;ϑ) = ±ω, with pbb : 1
2 (1± 1

2ωK[ϕ(x;ϑ)]) , ω =
√
δϑ

In the following we shall use t insead of ϑ.
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Relation to path integral

If the drift is the gradient of a real action, bounded from below

then there is a probability density P (ϕ, t) satisfying an associated

Fokker-Planck Equation (FPE) in the limit δt −→ 0:

∂tP (ϕ, t) = ∂ϕ (∂ϕ −K) P (ϕ, t), K = −∂ϕS

and we have:

P (ϕ, t) = c0e
−S[ϕ] +

∑

En>0

cnφne
−Ent → Pas(ϕ) = c0e

−S[ϕ], (t → ∞)

with En the eigenvalues of the Fokker–Planck Hamiltonian:

HFP = −∂2
ϕ +

1

4
(∂ϕS)

2 − 1

2
(∂2

ϕS)
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Thus:

- The stationary distribution of the variables reproduces the original

Boltzman factor.

- The convergence is controlled by the properties of the FP

Hamiltonian,

- Expectation values 〈f(ϕ)〉 can be calculated as averages over the

noise, equivalently as t averages:

f(ϕ) =
1

T

∫ T

0

dt f(ϕ(t)) = 〈f(ϕ)〉+O(1/
√
T ) ,

- In practice δt 6= 0: ρas(ϕ) has O(δt) corrections (controllable).
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Figure 1: Plaquette averages by LE and RW compared with MC

For a general discussion and application to Gauge Theory see

G. Batrouni, G. Katz, A. Kronfeld, G. Lepage, B. Svetitsky,

K. Wilson, PRD 1985
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CLE is the extension of the LE algorithm to the case of complex action.

This is possible in principle since the process does not rely on a

probability interpretation of the Boltzman factor.
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What shall we do with the complex action?
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What shall we do with the drunken sailor? (3 times)

... early in the morning ..

Hey, ho and up she rises (3 times)

Put’im in the longboat till he’s over ... (3 times)

Put him in the bed of the captain daughter ... (3 times)

Not known, which solution was better ...
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Typical Problems with complex action:

1. real time simulations, non-equilibrium QFT

J. Berges and IOS, PRL 2005; J. Berges, S. Borsanyi,

D. Sexty, IOS, PRD 2007; J. Berges, D. Sexty, NPhB 2008

2. chemical potential

3. θ− term ... L. Bongiovanni et al, Lattice 2013

CLE provides in all these cases an approach - sometimes, the only one

−→ develop this approach to a reliable method.

Here we discuss the problems, the possibilities to control them, and

show applications.
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Much work since the original papers of Parisi and of Klauder (1983),

both theoretical and aplicative, here only a few:

H. Hueffel, H. Rumpf, PLB 1984; F. Karsch, H. Wyld, PRL 1985;

H. Gausterer, J. Klauder, PRD 1986; T. Matsui, A. Nakamura,

1986; J. Ambjorn, M. Flensburg, C. Peterson, NPhB 1986;

J. Flower, S. Otto, S. Callahan, PRD 1986; M. Fukugita,

Y. Oyanagi, A. Ukawa, PRD 1987; K. Okano, L. Schulke,

B. Zheng PLB 1991; K. Fujimura, K. Okano, L. Schulke,

K. Yamagishi, B. Zheng, NPhB 1994; ...

Interest went down when difficulties appeared.

New interest in connection with problems for which no other general

solution is available: non-eqilibrium QFT, QCD at non-zero density, ...
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The present general work and our working programme :

1. Theoretical discussion [A, 3].

2. Study the various aspects of the problem on simple, soluble models

used as effective models, Random matrices, Thirring model [A, 1,

2, 4].

3. Extend the analysis to more complex models with non-trivial phase

structure XY -model, SU(3) spin model [A].

4. Extend the analysis to full QCD-approximations (HDQCD) [A, 5].

5. Study full QCD [A].

Our group [A] and beyond: C. Pehlevan, G. Guralnik, NPhB 2009

[1]; J. Pawlowski, C. Zielinski, PRD 2013 [2]; A. Duncan,

M. Niedermaier, Ann.Ph. 2013 [3]; A. Mollgaard, K. Splittorff,

2013 [4]; M. Fromm, J. Langelage, S. Lottini, O. Philipsen, JHEP

2012 [5] ...
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In the following: QCD with chemical potential (paradigmatic case).

The QCD grand canonical partition function (Wilson fermions):

Z =

∫

DU e−S , S = SYM − log detW (1)

W = 1− κ
3
∑

i=1

(

Γ+iUx,iTi + Γ−iU
†
x,iT−i

)

−κγ
(

eµΓ+4Ux,4T4 + e−µΓ−4U
†
x,4T−4

)

(2)

T : lattice translations, Γ±µ = 1± γµ, κ (hopping parameter) ∼ 1/M .

γ: (bare) anisotropy parameter, temperature introduced as aT = γ
Nτ

.

For non-zero µ detW (and thus S) are complex. −→ no MC!

We still have detW (µ) = [detW (−µ)]∗.
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Attempted solutions:

1. Reweighting (RW) (the simulation produces an ensemble using

only a real part of the action, the correction is done in the

averages.) I. Barbour et al (1997), Z. Fodor, S.Katz (2002)

2. Expansion (EM) (the simulation is done at µ = 0 and the averages

are calculated by expanding to µ > 0. TARO (2002), Ph. De

Forcrand, O. Philipsen (2002), F. Karsch et al (2004)

3. Histogram method S. Ejiri (2008, 2013), other methods

4. CLE Simulation

CLE does not suffer of overlap problem (RW) and is not restricted

to small µ (EM). It can in principle work in the whole range of

parameters and the ensemble is generated for the actual parameters.

But: has other problems −→ understand and solve.
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2. CLE: the drunkard’s complex walk ...
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Complex action −→ complex drift −→ imaginary parts for the variables

−→ Process defined on the complex extension of the original manifold:

Rn −→ Cn , SU(n) −→ SL(n,C), . . . .

The CLE with complex drift K(z) = −∇zS

z(t) = x(t) + i y(t) , x ∈ Mr , z ∈ Mc (3)

amounts to two related, real LE with independent noise terms

δz(t) = K(z, t) δt+ η(t) , η =
√

NR ηR + i
√

NI ηI (4)

i.e. : δx(t) = ReK(z, t) δt+
√

NR ηR(t) (5)

δy(t) = ImK(z, t) δt +
√

NI ηI(t) (6)

〈ηR〉 = 〈ηI〉 = 0 , 〈η2R〉 = 〈η2I 〉 = 2 δt , 〈ηRηI〉 = 0 , NR −NI = 1
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The processes realize a positive definite probability distribution P (x, y).

Notice: P (x, y) is generated at the actual values of the parameters!

Formal equivalence theorem: for analytic observables O(x, y) the

averages over the process reproduce the ensemble averages with the

original (complex!) distribution ρ(x) = exp(−S(x)):

〈O〉P (t) = 〈O〉ρ(t), (7)

〈O〉P (t) ≡
∫

O(x+ iy)P (x, y; t)dxdy
∫

P (x, y; t)dxdy
, 〈O〉ρ(t) ≡

∫

O(x)ρ(x; t)dx
∫

ρ(x; t)dx
. (8)

This is what we calculate This is what we want to get

The formal proof depends on various assumptions and can have

loopholes: some technicalities in Appendix
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Questions in controlling the process

We look for the properties of the measure ρ and of the drift K (the

objects we directly have to do with) K(z) = ∂z ρ(z) / ρ(z)

• There is evidence that CLE occasionally leads to wrong results.

• One can derive Consistency Conditions (CC)

(combinations of the observables ≃ DSE , and further bounds),

not fulfilled if the process leads to wrong results.

• One can define on-line signals for wrong evolution.

• We have constructed cures for some of these problems (and work

on the others!).

Notice: there are many processes K(z) (P (x, y)) leading formally to

the desired EV’s. This can be used in controlling the method.
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Possible sources of wrong evolution:

1. Accumulation of numerical errors. Typical effect: run-aways,

divergence of some quantities. K(z) becomes unbounded.

2. Unprecize sampling - in the presence of trajectories of K(z) going

far in the y direction.

3. Unsufficient fall off of P (x, y) in the y direction - can spoil the

formal proof of equivalence.

4. Non-holomorphy of the drift. Can invalidate the formal proof of

equivalence. Typical for us: poles of K(z) (zeroes of ρ(z)).

.

In some cases these effects can combine.
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Cures:

Concerning the “practical problems”:

1. Run-aways: efficiently eliminated by adaptive step size. Needs,

however, control of the step-size dependence.

2. Unprecize sampling: constrain the distribution P (x, y) by changing

the process.

Concerning the “problems of principle”:

3. Skirts (Unsufficient fall off of P (x, y)): constrain P (x, y) to reduce

its “skirt”.

4. Meromorphic drift: need to understand when it affects the result

and when not; no general method yet to handle, but partial results.
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3. Tests in effective models
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Meromorphic drift

Zeroes of the measure → poles of the drift (correspondingly, branch

points in the effective action, Mollgaard and Splittorff)

From tests on simple models we found that:

• Under certain conditions zeroes of ρ may lead to sign problems.

• These problems may be countered by forcing the process to sample

regions where the change of sign is taken over by the observables.

• This can be checked with reweighting procedures combined with

CLE by which the wrong behaviour can be repaired. (8.3)

• Our ambition is, however to systematically reconstruct the CLE

itself. This we did not yet achieved.

• In realistic cases (e.g., QCD) the poles do not seem to raise

problems, at least in the region of physical interest.
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Skirts and numerical imprecisions

In the following we shall stick to SU(3) −→ SL(3,C).

The one link SU(3) reduced model

U

PP
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Effective model for QCD : one link in the field of its neighbors.

−S =
β

2

(

trUA+ trA−1U−1
)

+ lnD + ln D̃ (9)

D = 1 + CtrU + C2trU−1 + C3, C = 2κeµ (10)

D̃ = 1 + C̃trU−1 + C̃2trU + C̃3, C̃ = 2κe−µ (11)

The matrices A ∈ GL(3, C) simulate the stapples.

Diagonalize A = V −1BV −→

−SY =
β

2

(

trÛB + trB−1Û−1
)

, B = diag(α1, α2, α3), Û = V UV −1

Invariance of the Haar measure −→ new variables Û ∈ SL(3, C)

(the determinant is invariant under this transformation).
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”Cartan” reduction: explicit integration in the 3 complex angles on the

diagonal, with the reduced Haar measure H −→ effective model:

−S =
β

2

3
∑

i=1

(

αie
iwi + α−1

i e−iwi
)

+ lnD + ln D̃ + f lnH (12)

H = sin2
w2 − w3

2
sin2

w3 − w1

2
sin2

w1 − w2

2
, w1 + w2 + w3 = 0

Effect of the neighbors: coded in the complex coefficients α.

Observables and CC conditions :

On = tr(Ûn) = ei nw1 + ei nw2 + ei nw3 (13)

En =
(

∇2 +K∇
)

On, K = −∇S (14)

The process runs in three or (equivalently) two angles, with

correspondingly three (two) noise terms.
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The Polyakov chain

Many variables (as in lattice theory): closed Polyakov line with n links.

The model is soluble (gauge transformation to 1 link model), but the

process is done in n links.

Action :

−S = (β + 2κeµ)Tr (U1 · · ·Un) + (β + 2κe−µ)∗ Tr
(

U−1
n · · ·U−1

1

)

The process runs in all 8 (complex) angles, with real noise:

∆Aa
i,µ = ǫKa

i,µ(U) +
√
ǫ η , Ui,µ −→ ei

∑
a λa ∆Aa

i,µ Ui,µ (15)

We observe wrong evolution setting in for large n even for values of

the parameters for which at n = 1 everything works fine!
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We learn from these exercises that:

• Wide skirts of the distributions (far diffusing scatter plots) lead to

wrong results.

• These effects apparently come from

- incorrect sampling and accumulation of numerical errors

- violation of the equivalence proof by boundary terms.

• For gauge theories a clear signal of wrong evolution is

uncontrolled departure from the unitary manifold.

• This suggests using gauge symmetry to redesign the process such

that it stays as near as possible to the unitary manifold.
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4. Gauge cooling
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For a correctly evolving process a ”unitarity norm” such as trU U † − 3

should converge to some (generally non-zero) value.

Since the clear symptom of incorrect evolution is the divergence of the

unitarity norm (UN) we introduce a gauge cooling to minimize the

unitarity norm

UN ≡
∑

links

[

1

2
tr
(

U U † + U−1 U−1 †
)

− 3

]

(16)

This succeeds by successive gauge transformations of the links

Rk = eiα ǫ dSG , Uk −→ Rk Uk , Uk−1 −→ Uk−1R
−1
k

- dSG: the gradient of the UN

- α: the strength of the gauge force, ǫ: step size.
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Notice:

• Gauge Cooling is a general method for gauge theories.

• It modifies the CLE process. It can be realized as intermittent

gauge transformations or as additional drift along the gauge orbits

- akin with stochastic gauge fixing.

• It does not change the observables but ”repairs” the process,

that is, the sampling of the observables.

• It must not be confused with usual cooling, since it does not

change gauge independent quantities, in particular the action.
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5. Lattice QCD with chemical potential,

HD approximation, Wilson fermions
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The lattice HDMQCD model I. Bender, T. Hashimoto, F. Karsch,

V. Linke, A. Nakamura, M. Plewnia, IOS, W. Wetzel, KEK 1991!

relies on the hopping parameter expansion of the determinant.

In the limit κ → 0, µ → ∞, ζ = κ eµ : fixed

only the Polyakov loops survive and the determinant factorizes.

Higher orders: κ2 , κ4 : straightforward (but beware combinatorics!).

HDM-QCD and HDQCD (symmetrized HDM) applications:

- Explicit formulae, extensive calculations, (full Y-M action, refined

reweighting), R. De Pietri, A. Feo, E. Seiler, IOS, PRD 2007

- Strong coupling expansion for the Y-M action, reweighting and CLE

P. de Forcrand, M. Fromm, PRL 2010, M. Fromm, J. Langelage,

S. Lottini, M. Neuman, O. Philipsen, PRL 2012

- CLE and refined reweighting, full Y-M action E. Seiler, D. Sexty,

IOS, PLB 2013
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HDQCD (”symmetrized” HDM), Wilson fermions

Action and observables (pbc/apbc):

S =
β

6
SYM ({U}) + ln detM(µ) (17)

detM(µ) ≡
∏

x

Det (1I + CPx)
2
Det

(

1I + C ′P−1
x

)2
(18)

Det (1I + CPx)
2 = (1 + C3 + 3CPx + 3C2P ′

x)
2 (19)

C = [2κ exp(µ))]Nt , C ′ = [2κ exp(−µ)]Nt (20)

Px =

Nτ−1
∏

τ=0

Ux+r0̂,0 , Px =
1

3
trPx; P ′

x =
1

3
trP−1

x . (21)

We measure also plaquettes, density and the average phase factor

〈n〉 = 1

V

∂ lnZ

∂µ
,
〈

e2iφ
〉

≡
〈

detM(µ)

detM(−µ)

〉

(22)
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We observe the same behaviour as in the Polyakov chain model. The

effect of cooling is dramatic.
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CLE for HDQCD using long cooling.
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HDQCD, comparison CLE with Reweighting (RW).

For Reweighting we employ a refined procedure (De Pietri et al, with

symmetrized action) which uses a positive real factor in the

Boltzmann factor and thus partly accounts for the chemical potential

dependence in producing the ensemble.

The rest of the Boltzmann factor is taken care of, as usual, in the

averages.

In this way one can extend to some extent the limitations in the

parameters typical to RW methods.

This permits using these calculations for comparisons with CLE .
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The deterioration threshold at β ∼ 5.6 appear to be independent on

the lattice size and only weakly dependent on µ, and thus stay well

below the phase transition on large lattices. A continuum limit would

thus be safe both in the deconfined and in the confined phase.
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Figure 9: HDQCD: CLE and RW on 163.8 lattices, Polyakov loops (left)

and plaquettes (right). An apparent small shift may be due to finite step

effects.
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6. Full Lattice QCD with chemical potential,

staggered fermions
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Staggered QCD action and the CLE process:

Seff [U ] = Sg[U ]− NF

4
ln detM(µ,U) (23)

M(µ,U)xy = mδxy +
∑

ν

ην(x)

2a

[

eδν4µUν(x)δx+aν ,y

− e−δν4µU−1
ν (x− aν)δx−aν ,y

]

, (24)

ǫxM(µ,U)xyǫy = M†(−µ∗, U)yx, ǫx = (−1)x1+x2+x3+x4

with ηµ(x): the staggered signs, and (a)pbc.

The CLE updating is defined as before, with the drift

Kaxν = −DaxνSg[U ] +
NF

4
Tr[M−1(µ,U)DaxνM(µ,U)] (25)
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In full QCD as in HDQCD gauge cooling is essential, already at µ = 0.
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Figure 10: Unitarity norm as a function of Langevin time with and

without cooling for several values of the Langevin timestep ǫ.
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Results for QCD at µ > 0, small fermion mass.

D. Sexty, PLB 2014, to appear
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Figure 11: Average phase factor and density, 44 lattice (left) and density,

chiral condensate and Polyakov loops, 64 lattice (right) vs µ/T .
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Full QCD, comparison with multi-parameter reweighting

S. Borsanyi, Z. Fodor, S. Katz, D. Sexty (in preparation)
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Figure 12: Polyakov loops (left) and plquettes (right) vs µ/T , 83.4

lattice, comparison with full QCD reweighting.

The results agree very well, but at higher µ the reweighting has

prohibitive errors while CLE remains stable.
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Full QCD, comparison with HQCD D. Sexty, PLB 2014

The comparison is done for 1 flavour, full QCD with staggered and

HDQCD with Wilson fermions with the identification m = 1/(4κ)
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Figure 13: Comparison of the average densities (left) and Polyakov loops

(right) measured in HQCD and in full QCD with staggered fermions.

HDQCD agrees very well to full QCD at large fermion mass, but the

qualitative behaviour appears very similar also at intermediate mass!
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7. Discussion
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• CLE has the chance to become a versatile, general method for

solving the problem of complex action (QCD with chemical

potential, non-equilibrium QFT and real time evolution, etc).

• The method does not suffer of cancellations and of the overlap

problem.

• The method works in a parameter range not reached by any other

method.

• The volume dependence is comparable with that of MC for real

action (and differs essentially from that of RW).
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Insights and solutions:

• Some problems seem to originate from a combination of the

particularities of the evolution (fixed point structure, etc) and of

numerical imprecisions.

• We could relate these problems to the behaviour of the

distribution in the imaginary direction and solve them for gauge

theories using the gauge symmetry (gauge cooling).

• A possible source of trouble, not yet solved in principle are poles in

the drift. In realistic, interesting cases this does not seem to have

significant effects and by smoothing out the configurations gauge

cooling may help also here. Nevertheless we want to find a

systematic understanding.

• CLE with gauge cooling allowed us to analyze full QCD in the

whole region of interest aiming at physical results far beyond the

reach of any other method. 53
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8.2 Some technicalities
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Observables and distributions.

Consider an “observable” O: an analytic function on Mc.

The expectation values are averages over the noise. We have:

∂t〈O(z(t))〉 = 〈LO(z(t))〉 = 〈L̃O(z(t))〉 (26)

L = [NR∇x +Kx]∇x + [NI∇y +Ky]∇y (27)

L̃ = [∇z +K(z)]∇z (28)

(the second equality in Eq.(26) follows from the C-R conditions).

Notice that L explicitely involves NR, NI while L̃ does not.

Notice: the following considerations assume holomorphy of the drift

and of the observables.
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We can define a FPE for the probability distribution P (x, y, t) as

realized in the process (5,6) on Mc:

∂tP (x, y, t) = LT P (x, y, t), 〈P,LO〉 = 〈LTP,O〉, (29)

LT = [∇x (NR ∇x −ReK(z)) +∇y (NI ∇y − ImK(z))] (30)

We can also define a FPE for a complex “distribution” ρ(x) on Mr:

∂tρ(x, t) = LT
0 ρ(x, t), LT

0 = ∇x (∇x −K) (31)

which has as (complex) stationary solution ρ(x;∞) ∝ exp [−S(x)].

We can thus define two types of expectation values

〈O〉P (t) ≡
∫

O(x+ iy)P (x, y; t)dxdy
∫

P (x, y; t)dxdy
, 〈O〉ρ(t) ≡

∫

O(x)ρ(x; t)dx
∫

ρ(x; t)dx
.(32)

and what we should like to show (for large t) is

〈O〉P (t) = 〈O〉ρ(t), (33)
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Set up for the correctness question.

Instead of evolving P (x, y, t) we evolve the observables.

For analytic functions we can use interchangeably L and L̃:

∂tO(z; t) = L̃O(z; t) (t ≥ 0) → O(z; t) = exp[t L̃]O(z). (34)

or equivalently

∂tO(x; t) = L0O(x; t) (t ≥ 0) → O(x; t) = exp[t L0]O(x). (35)

We consider the interpolation

FO(t, τ) ≡
∫

P (x, y; t− τ)O(x+ iy; τ)dxdy, (36)

FO(t, 0) = 〈O〉P (t), FO(t, t) = 〈O〉ρ(t). (37)
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Proof of the first equality: self evident.

Proof of the second equality:

FO(t, t) =

∫

P (x, y; 0)
(

etLO
)

(x+ iy; 0)dxdy

=

∫

ρ(x; 0)
(

etL0O
)

(x; 0)dx

=

∫

O(x; 0)
(

etL
T
0 ρ
)

(x; 0)dx

= 〈O〉ρ(t), (38)

Here we set P (x, y; 0) = ρ(x; 0) δ(y) with a suitable ρ(x; 0) as initial

conditions and used partial integration in x which is unproblematic (x

will normally be a compact variable).
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Formal proof of correctness and its loophole.

Equality 〈O〉P (t) = 〈O〉ρ(t) is ensured if FO(t, τ) is independent of τ :

∂

∂τ
FO(t, τ) =−

∫

(

LTP (x, y; t − τ)
)

O(x+ iy; τ)dxdy

+

∫

P (x, y; t − τ)LO(x+ iy; τ)dxdy. (39)

The RHS =0 after integration by parts.

This proof relies on neglecting boundary terms from the y-integration.

Loophole: The proof fails if the fall off of the probability distribution is

not sufficient for the boundary terms to vanish.
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8.3
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One U(1) link integral with ”determinant” factors.

(For another soluble model: Random matrices K.Splittorff.)

ρ(z) =
∏

i

Di(z) e
β cos(z), (40)

Di(z) = (1 + κi cos(z − i µi))
fi , (41)

K(z) = −β sin(z)−
∑

i

fi κi

sin(z − i µi)

1 + κi cos(z − i µi)
(42)

The drift has poles:

κi ≥ 1 : cos(x) = − 1

κi

, y = µi ; res = fi (43)

κi < 1 : x = π, cosh(y − µi) =
1

κi

; res = fi (44)

Since ρ has zeroes we can speak of a sign problem. (Different concept!)
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For real models with sign problem the process can be shown to

separate and lead to different distributions.

This also holds in the above model if we keep only one pole, since the

model is then equivalent to a real one by a shift y → y + µ.

Since the process automatically realizes a positive probability

distribution P (x, y) the change of sign in ρ cannot be taken care of by

P itself but has to be reproduced by sign changes in the observables.

Pragmatic perspective: try to ad hoc repair the procees, aiming at

understanding its features (looking at the response).
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For the real case with sign problem we use the above model with one

pole and β = 0, µ = 0. The above observations can be checked

making ρ positive by:

Additive reweighting.

For any observable satifying
∫

O =0 (e.g., einx) we can rewrite 〈O〉 as

〈O〉ρ =
〈O〉σ
〈ρ/σ〉σ

, σ = ρ+ c (45)

with c = constant, since we have

〈O〉ρ =

∫

ρO
∫

ρ
=

∫

σO
∫

ρ
=

∫

σO
∫

σ

∫

σ
∫

ρ
. (46)

We thus run CLE with real drift derived from the positive density σ

and correct the normalization as shown above.
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Figure 14: Real model for κ = 2, µ = β = 0; data points: CLE with

additive reweighting vs c/2, random complex starting points; solid lines:

exact results.
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In the complex case the situation is similar. For “small” β, κ > 1 we

observe wrong convergence.

Observation: apparently the process does not sample correctly the

regions of negative determinant. We check this observation using

Sign reweighting:

correct for the sign of the determinant in the observables:

〈O(z)〉corr =
〈O(z)c(z)〉

〈c(z)〉 , c(z) = sgnRedet(z) (47)

Notice: this is not the usual reweighting, the process is still complex!

For more then one pole we have an irreducible complex model. We can

apply sign correction in the same way as for one pole.
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Figure 15: Effect of one pole, large κ vs β, uncorrected (left) and

with an sign reweighting (right)
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Figure 16: Effect of one pole, β = 0 vs κ with (left) and of two poles

κ > 1 vs β without sign reweighting (right).
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for two poles (additional at κ = 3, µ = 2) (right).
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For more complex models the response to such redefinitions may differ

(cf. K. Splittorff, private communication), which may mean that

there are also other effects at work.

We learn from these exercises that:

• under certain conditions zeroes of ρ may lead to sign problems.

• these problems may be countered by forcing the process to sample

regions where the change of sign is taken over by the observables.

• reweighting procedures of the above kind combined with CLE may

work but our ambition is to reconstruct the CLE itself.
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8.4 Effective model
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Figure 18: Effective model: Observables and CC’s vs Imβ, for αi = 1.

The violation of the CC’s signalizes discrepant results.
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Figure 20: Effective model, µ dependence in the “good” (left) and in
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8.5 Hopping parameter expansion, systematic approximation

IOS (1982), Smit, Kawamoto (1982):

DetW = exp(Tr lnW ) (48)

= exp



−
∞
∑

l=1

∑

{Cl}

∞
∑

s=1

(κl
λgCl

)
s

s
TrD,CLs

Cl





=
∞
∏

l=1

∏

{Cl}

DetD,C

(

1 − (κλ)
lgCl

LCl

)

with Cl a closed, non-self-repeating path, λ the links on Cl and

LCl
=

(

∏

λ∈Cl

ΓλUλ

)s

, gCl
=
(

ǫ e±Nτµf
)r

or 1 (49)

with non-trivial gCl
for loops winding r times in the ±4 direction with

periodic(antiperiodic) b.c. (ǫ = +1(−1)) and κλ = κ or κ γ for

spatial/temporal links.
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8.6 Random Walk for CLE

A corresponding pair of real RW processes

δx(t) = ±ωx , Px,± = 1
2 (1±

ωx

2
ReK(z, t)) (50)

δy(t) = ±ωy , Py,± = 1
2 (1±

ωy

2
ImK(z, t)) (51)

ωx =
√

2NRδt , ωy =
√

2NIδt (52)

where P± are real transition probabilities and we have defined the

steps such as to have the same δt in all processes, to ensure the

correct synchonization between them.
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8.7 Staggered determinant in full QCD
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Figure 21: Phase average 〈det(µ)/det(−µ)〉 (left) and scatter plots of

the phase (right), QCD with staggered fermions.
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8.8 More figures ...
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Figure 22: SU(2) one-link model: scatter plots of TrU without and with

gauge fixing, at β = i.
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Figure 23: SU(3) updating.
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Little cooling, “numerical” exponentiation.
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Figure 24: Polyakov chain, euclidean case (µ = 0): evolution of the UN

in langevin time t for various n; α = 0.0001 .
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Dependence on cooling,“numerical” exponentiation.
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Figure 25: Polyakov chain, euclidean case: evolution of the UN in

langevin time t for various α(= gf) .
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General (complex) case, “numerical” exponentiation.
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Dependence on step size ǫ.
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Figure 26: Polyakov chain, complex case: evolution of the UN in

langevin time t for various α.
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Figure 27: Polyakov chain, complex case: evolution of the UN in

langevin time t for various α.
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Dependence on cooling of the distribution (“numerical

exponentiation”).
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Figure 28: Distribution of the variables.
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Dependence on α (“numerical exponentiation”)
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Figure 29: n=4 links.
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Dependence on n (“analytic exponentiation”). The higher n the more

cooling is necessary.
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Figure 30: Observables vs log2(n). 1 ≤ N ≤ 100 , 1 ≤ α ≤ 20000.
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Behaviour of the observables and of the unitarity norm. (“analytic

exponentiation”)
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Figure 31: Evolution in langevin time t for n = 1024 , α = 20000 , 50

cooling sweeps after each dynamical sweep.
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Figure 32: Evolution in langevin time t for n = 32 , α = 20000 , N =

50 cooling sweeps after each dynamical sweep.
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Lattice QCD with chemical potential, HDM approximation
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HDM-limit (0-th order):

κ → 0, µ → ∞, ζ = κ eµ : fixed (53)

only the Polyakov loops survive.

Higher order corrections: κ2 , κ4 are straightforward (combinatorics).

The determinant factorizes.
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