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Introduction: dense systems

Studied using Monte Carlo simulations



Introduction: dense systems

Condensed matter
High Tc superconductivity

Hubbard model
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Introduction: dense systems

Nuclear physics
stellar nucleosynthesis

Shell model
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Introduction: dense systems

High energy physics

Heavy ion collisions

QCD on the lattice




Introduction: sign problem

N Hubbard Model
N Shell Model
NQCD

What do they have in common?

SIGN PROBLEM



Introduction: dense systems

7 = /DAdet[lD%—m—,u”yO/Q]eSYM

The sign problem >  [det M(u)]* = det M(-u™)

at finite chemical potential
the fermionic determinant is complex:
standard Monte Carlo methods fails

Unfortunately we cannot simply neglect the
: phase of the determinant. Phase quenched
-~ )
det M(u) = |det M(u)| §< theory can be very different from the real

world

An example of that difference that we will treat later is
the Silver Blaze phenomenon



Introduction: Lefschetz thimble

£/
s
.

We want to overcome sign problem for Lattice QCD
We must be extremely careful not destroying physics
[ Silver Blaze phenomenon ]

whatever machinery we use to solve the theory

Integration on a Lefschetz thimble

Before applying the idea to full QCD we choose to
start from something more manageable: we consider
here integration on Lefschetz thimbles for the case
of a simple O-dim field theory and

the 4-dim scalar field with a quartic interaction



Lefschetz thimble on a lattice

Saddle point integration
the Airy function
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© Lefschetz thimble on a lattice

Saddle point integration
the Airy function

Ai(x) = QL /OO 6i(§+xt)dt
T — 0

_complexify . L / (& tez) g, integrateonsD 1 4 / K +e2)] 4,
27/, g

N Complexify the variable t — tr + 111 t
AStationary point

A Steepest descent for the real part of the
exponent starting at the stationary point

A [maginary part of the exponent is constant




Lefschetz thimble on a lattice

Saddle point integration
the Airy function
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N Complexify the variable t — tr + 1 tg

AStationary point

ASteepest descent for the real part of the
exponent starting at the stationary point
N[maginary part of the exponent is constant
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From saddle point to Lefschetz thimble

Saddle point integration

Works extremely well for low dimensional oscillating integrals.

Usually combined with an asymptotic expansion around the stationary
point (sort of perturbative expansion).

The phase is stationary +
important contributions localized =
good for sign problem

What about a Monte Carlo integral
along the curves of steepest descent



Lefschetz thimble on a lattice

Path integral and Morse theory
E. Witten arXiv:1009.6032 (2010)

Complexify
the degrees of freedom

Deform appropriately the
original integration path
(Morse theory) o

...................................................................................................................................................................

L, for each stationary point ps the Lo (thimble) is the union

of the paths of steepest descent that fall in po at o

C= Z n.L, the thimbles provide a basis of the relevant
’ o homology group, with integer coefficients

Generalization of the
one dimensional SD to
n-dim problems is
called Lefschetz thimble



Lefschetz thimble on a lattice

Path integral and Morse theory
E. Witten arXiv:1009.6032 (2010)

complexity dx" f)  zzxtliy.. dz" f(z)
the degrees of freedom / x" g(x)e > ) z"g(z)e

Deform appropriately the
original integration path
(Morse theory)

steepest descent

# of intersections between steepest
ascent and original integration domain

steepest ascent



Lefschetz thimble on a lattice

Lefschetz thimbles and QFT

Can we use the thimble basis to compute
the path integral for a QFT 7

_ Jell, dgee™*?IO[g] >0 o [ I, dgze™>90[g]

(0) =

O =T dgeeo@ S o [, 1L, dgwe ST

—> |n principle yes but we have to discuss “the details”



Lefschetz thimble on a lattice

Lefschetz thimbles and QFT

_ Jell, dgee™*?IO[g] >0 o [ I1, dgze™>90[g]

(0) =

O =" IL g5 5, 10 [, 1L, déye59

Computing the contribution from all the thimbles
Is probably not feasible

On a Lefschetz thimble the imaginary part of the action is constant
but the measure term does introduce a new residual phase, due to the
curvature of the thimble




Lefschetz thimble on a lattice

Lefschetz thimbles and QFT

the residual phase

f [].do 6—5[¢](f)[¢] Additional phase coming from the Jacobian of
<(9> _ JJo 1% 4 the transformation between the canonical
- —S[o complex basis and the tangent space to the
J7, 11 A@ae™>% ae ¥ ¥

2 Does it lead to a sign problem?
No formal proof but ...
Nd®P=1 at leading order and <d®>« 1 are strongly
suppressed by e

w there is strong correlation between phase and weight
(precisely the lack of such correlation is the origin of the
sign problem)

2 [n fact this residual phase is completely neglected in the
saddle point method



Lefschetz thimble on a lattice

Lefschetz thimbles and QFT

the residual phase

f [].do 6—5[¢](f)[¢] Additional phase coming from the Jacobian of
<(9> _ JJo 1% 4 the transformation between the canonical
- —S[o complex basis and the tangent space to the
J7, 11 A@ae™>% ae ¥ ¥

2 Does it lead to a sign problem?

Hopefully not but nevertheless the calculation of that phase
cannot be avoid!

—> highly demanding in terms of computation power

~ H. Fujiiet al JHEP 1310 (2013) 147
~ Next talk: Y Kikukawa



Lefschetz thimble on a lattice

Lefschetz thimbles and QFT

_ Jell, dgee™*?IO[g] >0 o [ I1, dgze™>90[g]

(0) =

O = T dgee o S o [, 1L, dgwe ST

Computing the contribution from all the thimbles
Is probably not feasible

—> |s it necessary in order to have the correct physics?

| will try to convince you that in many cases we can
consider only one thimble



Lefschetz thimble on a lattice

Lefschetz thimbles and QFT

choosing the stationary point

The study of the stationary points of the complexified theory is mandatory
and has to be done on a case-by-case

The system has a single global minimum?

There are degenerate global minima, that These cases
are however connected by symmetries? are good!

There are degenerate global minima, with
vanishing probability of tunneling?

There is a large number of stationary points
that accumulate near the global minimum
giving a finite contribution?

This case
can be bad!



Lefschetz thimble on a lattice

Lefschetz thimbles and QFT

choosing the stationary point

uE I H H H H 5 H H H 5§ H H H H H H H H H H H H H = =5 = = = '

| ¥y . . _ 1

—S[¢)] 1 This is an exact reformulation of the original

<(9> _ Za No fJa HCU doge O[¢] s , Pbath integral. I

For a QFT reproducing the original integral
Is both impractical and unnecessary

> N fj [, dp,e=519]

Consider the stationary point with the lower value
of the real part of the action and with no#0
Define a QFT on the thimble attached to this point. If

—> The degrees of freedom are the same
—> The symmetries are the same

—> The same perturbative expansion

—> The same continuum limit

By universality this is a legitimate regularisation of the original QFT



Lefschetz thimble on a lattice

Lefschetz thimbles and QFT

choosing the stationary point

uE I H H H H 5 H H H 5§ H H H H H H H H H H H H H = =5 = = = '

| ¥y . . _ 1

—S[¢)] 1 This is an exact reformulation of the original

<(9> _ Za No fJa HCU doge O[¢] s , Pbath integral. I

For a QFT reproducing the original integral
Is both impractical and unnecessary

> N fj [, dp,e=519]

Consider the stationary point with the lower value
of the real part of the action and with no#0

Define a QFT on the thimble attached to this point. If grveeaitylo-nota
theorem BUT it is an
—> The degrees of freedom are the same assumed property
—> The symmetries are the same studying QFTs on a
lattice

—> The same perturbative expansion

—> The same continuum limit

By universality this is a legitimate regularisation of the original QFT



Lefschetz thimble on a lattice

Lefschetz thimbles and QFT

choosing the stationary point

oy - S Sy, L done 590 _ S5, Iz d6.e 0]

Consider the stationary point with the lower value
of the real part of the action and with no#0

Define a QFT on the thimble attached to this point. If grveeaitylo-nota
theorem BUT it is an
—> The degrees of freedom are the same assumed property
—> The symmetries are the same studying QFTs on a
lattice

—> The same perturbative expansion

—> The same continuum limit

By universality this is a legitimate regularisation of the original QFT



Lefschetz thimble: algorithm

Integration on a Lefschetz thimble

M. C., F. Di Renzo and L. Scorzato
PRD86, 074506 (2012)

Is it numerically applicable to QFT’s on a Lattice?

Before applying the idea to full QCD we choose to
start from something more manageable: we consider
here integration on the Lefschetz thimbles for the
case of

— a 0 dimensional field theory with U(1)
symmetry

— the four dimensional scalar field with a
guartic interaction



Langevin
PRD Rapid 88, 051501 (2013)

- doR 59T (¢ dn;(7)
5 dT(T) - 5@?(%((:))) (), = 2 MkOk0s 5
projection of the noise
dol(t)  6ST(e(1)) I on the tangent space
- dr Sl (1) i
Metropolis
PRD Rapid 88, 051502 (2013)
dgi(r) 1738 | . 5 '
dr réd(ry > diln 1) = diln) +or 0Q;

Other methods (example HMC)

~ H. Fujii et al JHEP 1310 (2013) 147
~ Next talk: Y Kikukawa



Langevin
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We want to compute this: boundend from below on Jo

1 4
O) — 51 do., —Sr[¢] M
(©) = —e /j Jaeee 9

€T
constant on Jo

. preserve Jo |
B
. construction:

R E R b
We can use a Langevin Ay’ (7) :5—55 ](%(b(T)) +nl(r) Need to be
algorithm but how can dr 00;*(7) projected on
we stay on the thimble? do! (1) 6SE(o(7)) ; the tangent
dr ~ _ 5¢[ (7_) + ; (7-) Space to Jo

1

.....................................................................



Lefschetz thimble: algorithm

Langevin
PRD Rapid 88, 051501 (2013)

preserve Jo |
by
.construction

dof(r) 95" (4(1)) + nR(7) Need to be

We can use a Langevin

=i -
algorithm but how can dr 0¢;(7) ¢ projected on
we stay on the thimble? def(r) | 08T (¢(1)) ; the tangent

dr 2 _ 5¢ZI(T) + ; (T) Space to JO

The tangent space at the stationary point is easy to compute

We can get tangent vectors at any point if we can transport the noise along the
gradient flow so that it remains tangent to the thimble

dn;
> Losy) =0 o [@Spal=0 o T2 =Y sk

projection of the noise
on the tangent space




Lefschetz thimble: algorithm

Langevin
PRD Rapid 88, 051501 (2013)

Ao (7) :_5SR(¢(T))MR(T) i L
5 R L i
dr 0; (7) dn; (1) ZH(T)kaka Sr
do? (1) - _ §SE(o(T)) —|— n-I(T) dr ®
dr."c 10 e AP Pt

o.  Start from the global minimum of the
"2 real part of the action, generate a noise
vector projected on the thimble and

follow the steepest ascent

- Perform a Langevin step using the noise
evolved along the steepest descent and

compute the observables

.. Go back along the steepest descent

" until you are in a region where
quadratic approx. is valid and then
project the configuration on the thimble

Generate a new noise and go
> back along the steepest ascent

*in the plot you have -Sr that is the exponent in the
integrand of the partition function : where | wrote ascent
(descent) you see the opposite in the figure
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Metropolis
PRD Rapid 88, 051502 (201 3)

............................................................................

In the neighbourhood S[¢] = Sl¢ol + Sanl + O(nl°)

of a critical point — | 1

The A and w are
solutions of

Go is the flat thimble :
associated to the gaussian |
action Sc =

nreal are the direction of steepest descent of Sr and the equations of
steepest descent of n for the Gaussian action can be explicitly solved in term

of a new parameter r=e7

% 1 0S¢

—> — = — ARk

dr ; 37% K

the Lefschetz and
Gaussian thimbles coincide

but for r=¢ infinitesimal >

Nk X T
.......................... .
) Z Mg Start with a random :
k real n vector, compute
d(e) and evolve using :
steepest descent .
|



Metropolis
PRD Rapid 88, 051502 (201 3)

L e L e LR Y

of a critical point  — 1 Go is the flat thimble

associated to the gaussian
5 action Sg '

In the neighbourhood S[¢] = Sloo] + Scln] + O(|nl?) > i

The A and w are
solutions of

n —s N-dim random vector living on the

manifold defined by the B s S N B & S 4 g
eigenvectors of the Hessian do;(r) 1 46S
computed at the critical point with T dr T odi(r) :
positive eigenvalues 5T

s >  ¢i(n+1)=¢;i(n)+ or '

|n| — distance along the thimble

In|/O0r —s number of steps along the steepest
descent



© lLefschetz thimble: algorithm

Gaussian thimble

0 GaUSS|an manifold: u
' flat manifold defined by the directions of |
] steepest descent at the critical point N

| |n |/0r=N —> number of steps along the steepest
descent

~ Decreasing or your manifold get closer and closer to the Lefschetz thimble

& If the action decreases fast away from the stationary point
integrating on the Gaussian thimble can be sufficient



_
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Can be seen as the limiting case of the more
Interesting three-dimensional XY model

One dimensional problem: the integration on the Lefschetz
thimble can be plotted

ACTION § = —ig (U + U_l) = —13 CcoS @

OBSERVABLE

On the thimble

S Mo [ dpO(p)e5®) Sr = —fsin ¢psinh ¢;

Y oMo fja d¢(¢)€_s(¢) Sr = —Bcosprcosh ¢;

constant on the thimble
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The stationary points are in (0,0) and (7,0) and the
thimble can be computed also analytically

Exact thimbles: have to pass from the critical point
and the imaginary part of the action has to be
constant

S1(7) = =B cos pr(T) cosh ¢y () = S}

CRITICAL POINTS

THIMBLES




3¢

PRD Rapid 88, 051502 (2013)

The stationary points are in (0,0) and (7,0) and the
thimble can be computed also analytically

In order to perform the integration on the thimble we use a

Metropolis algorithm

: . ) Gaussian manifold
Gaussian v
2 "a N‘t=2 A
N=6 o
1 F Nt=iOO 0 i EEEE S EEEEE S SEE .- - === .
Exact - 1 Increasing the accuracy in the :
| integration of the steepest descents
0t 1 we move closer to the exact :
: thimble .
-1} /
2 F
-3 . i A
-1.5 -1 -0.5 0 0.5 1
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Gaussian
N._=2
N_=6

N.=200

T

-1.5

Ro

0.1

OBSERVABLE
<6i¢> | I Jl (5)

There are parameter regions where

Jo(B)

integration on the Gaussian
manifold is sufficiently accurate

1.5

‘h
L) .



U(1) one plaquette model

PRD Rapid 88, 051502 (2013)

Residual phase is well under control and is not a source
of additional sign problem (at least in this case)

—S(¢) There is an additional phase coming from the
<0(¢)> _ ZG Mo fJa dqb(’)(d))e Jacobian of the transformation between the
o —S(¢) canonical complex basis and the tangent space
2o Ma fJa dgp()e to the thimble
Lr ' Ny A e o
This phase should be essentially e ——
constant over the portionof ~— + | T
phase space which dominates the 0.8 F
Integral. .
<
{: 0.6
o
/ S 04 F
P . : 4
|
_aesidydiphass s 02 F N6
N.=200 ------ . Log scale:
O - s ey . A | S PSR
., SR ! 0.0001 0.001 0.01 0.1 1
' Probability measure ! > |J¢ e S|
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S|, ¢7] = /d4X(\5‘u¢!2 +(m* = p)|¢]* + Mo|* + u(¢"o¢ — Do)

Continuum action

Silver Blaze problem
when T=0 and u<uc physics is
independent from the chemical potential

We will study the system at zero temperature
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S, 7] = / d*x(|9, 62 + (m?

S[¢, 0] = > [(2d + m?)$; dx + A(D; bx)

X

4

— 1) 91> + AB|* + (¢ 00d — Dod* 9)

Continuum action

Lattice action:
chemical potential introduced as
an imaginary constant vector

— Z(ije_“a”")cbxw + h 50 y)) potential in the temporal direction
v=0
in term of real fields ¢q(a=1,2) ¢ = T(gm i)

S[a) = ) ;(Zd—l— m

X

)2 + qua xDaxti

— cosh 1 ¢a,x¢a,x_|_() + isinh p 8ab§ba,x¢b,x+6}




A ®4 theory on the lattice

PRD Rapid 88, 051501 (2013)

PHASE QUENCHED

S[o, *] = / d*x(10, ¢ + (m* — 1) |8)* + A|o|* + (¢ 0d — Bog™* )

(O full = ngb,e_S‘ewO L <6i90>pq 4 N 9
full [Dgle=5]eif () 0

Let us try ignoring the phase

_ | Dgle [0
<O>Pq a8 ID¢)€_S‘
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PHASE QUENCHED

v
£ 4 2 2 2\ 1 (2 4 e d
Si6. 7] = [ d'x(19,07 + (m — )0 + N + (" dg 0667 0)

0.2_ 1_—
| 0.8-'
0.15_' i
A 0.6:'
2 0.1 E: _
& 041
005} 0.2}
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On the Lefschetz thimble

M. C., F. Di Renzo, A. Mukherjee and L. Scorzato
arXiv:1303.7204 (201 3)

Fields are complexified ¢, — gbg + Zgbé

The integration on the thimble performed with a Langevin
algorithm

In this case calculations in Gaussian approximation are sufficient
to obtain the exact result




<n>

A ®4 on a Lefschetz thimble

PRD Rapid 88, 051501 (2013)

On the Lefschetz thimble

02 T T T T T I 1 T T
pq L=6 é pq L=6
pqL=10 =~ & pgL=10 =&
AAB* g : 0ol AAEY ..m--
015 B AA84 e O E- AA84 R COEEE
@
8 By 0.6 F
i
0.1 F :/4%- &
A(,/A q) &’ 04 } :
0.05 } 0ok |
v :
O AT Ozr_ ........ AT I = e I =S B =S — . . A — A _AE_ A -
0 0.2 05 06 07 08 09 1 11 1.2
w u
SilverBlaze i

solving sign problem we have the correct physics



A ®4 on a Lefschetz thimble

On the Lefschetz thimble

0-7 | | 4 | | | | | | | | ] ]
AA 84 --Q- -4 !
0.6 FWA8" i— s A Comparison with
2 Worm Algorithm
0.5} 1 (courtesy of C. Gattringer
04k 3 . and T. Kloiber)
AN
\C/ 0.3 } 3 .
10InZz
0.2 } 5 - (n) = 75
U
0.1 F 5 4
OF ¢ ¢ ¢ ©¢ © o e a @ 2 -
_01 1 1 1 1 1 1 1

0.95 1 1.05 1.1 1.15 1.2 1.25



What about QCD?

Consider the stationary point with the lower value
of the real part of the action and with no+0
Define a QFT on the thimble attached to this point.

N\ In QCD this is the trivial vacuum

\\ Complexification: A%(x) = A% (x) + 1A% () a=1.N"1

74

SU(3)*" — SL(3,C)*

O .
N\ Covariant derivative:  V, , (F[U] := a—&F[ew‘Ta U, (7)]|a=0
VCU,V,CL m va}iu,a =) iv:{c,l/,a
v%’/aa n va,l/,a + ivLIU,I/,CL
N\ Equation of steepest descent: diUu(iv; T) = (—iTavx,y,ag[U])Uy(a';; T)
1

\ Pefining the thimble for gauge theories is possible: substitute the concept of non-
degenerate critical point with that of non-degenerate critical manifold

All the ingredients are there



What about QCD?

—> The symmetries are the same? Yes

N\ It can be proved starting from the invariance of

the SD equation:
d - -
U (:7) = (=iTa Ve 0o S[UNU, (2 7)
T

Under gauge transformations it changes as:

(TaVew,aS[U]) = (A(z) ™) (TaVaw,oS[UDA(2)]
U, (z) = Ax)U, (2)A(x 4+ D)~ !

The full SD equation is invariant only under the SU(3) subgroup of SL(3,C)

this is very interesting: the gauge links are not in SU(3) but the gauge
Invariance i1s exactly the same!

—> The perturbative expansion is the same? Yes

N It is an expansion around the trivial vacuum where the integrand in the
partition function has the form of a gaussian times polynomials
(let me skip the details)



- Theoretical questions (single thimble,
residual phase, reflection positivity ... )

- O-dim P4 (finished)

- Chiral random matrix theory

- Thirring model

- Hubbard model (repulsive almost done)
- SU(3) pure gauge with theta term

- QCD in 0+1 dimension

- QCD



thank you



