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Nuclear physics

Introduction: dense systems

High energy physics

Condensed matter



Introduction: dense systems

!
Studied using Monte Carlo simulations



Introduction: dense systems

Condensed matter 
High Tc superconductivity

Hubbard model

HK = �t
X

hi,ji,�

(c†i�cj� + c†j�ci�)

Hµ = �µ
X

i
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X
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Introduction: dense systems

Nuclear physics 
stellar nucleosynthesis

Shell model

Z = Tr
h
e��(HMF+HVres )

i

HMF =
X

↵

✏↵a
†
↵a↵

HVres =
1

2

X
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Introduction: dense systems

High energy physics 
Heavy ion collisions

QCD on the lattice

Z =

Z
DU det[M(U)]Nf e�SG[U ]

SG[U ] =
�

3

X

n2⇤

X

µ<⌫

Re tr[1� Uµ⌫(n)]



Introduction: sign problem

Hubbard Model 
Shell Model 
QCD 
!
What do they have in common?

SIGN PROBLEM



The sign problem 
at finite chemical potential  
the fermionic determinant is complex: 
standard Monte Carlo methods fails

[det M(μ)]* = det M(-μ*)

Unfortunately we cannot simply neglect the 
phase of the determinant. Phase quenched 
theory can be very different from the real 
world

An example of that difference that we will treat later is 
 the Silver Blaze phenomenon

det M(μ) = |det M(μ)| eiθ

Z =

�
DA det[ /D + m � µ�0/2]eSY M

Introduction: dense systems



Introduction: Lefschetz thimble

We want to overcome sign problem for Lattice QCD 
We must be extremely careful not destroying physics  

[ Silver Blaze phenomenon ]  
whatever machinery we use to solve the theory

Integration on a Lefschetz thimble

Before applying the idea to full QCD we choose to 
start from something more manageable: we consider 
here integration on Lefschetz thimbles for the case 
of a simple 0-dim field theory and  
the 4-dim scalar field with a quartic interaction



Lefschetz thimble on a lattice

Saddle point integration 
the Airy function 
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1
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Lefschetz thimble on a lattice

Saddle point integration 
the Airy function 

   Stationary point 
   Steepest descent for the real part of the 
exponent starting at the stationary point 
   Imaginary part of the exponent is constant

t ! tR + i tIComplexify the variable 

tR

tI

SR

steepest descent

Ai(x) =
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e

i

⇣
t3
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dt
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complexify integrate on SD 1
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   Stationary point 
   Steepest descent for the real part of the 
exponent starting at the stationary point 
   Imaginary part of the exponent is constant

Lefschetz thimble on a lattice

Saddle point integration 
the Airy function 

Ai(x) =
1

2⇡

Z 1

�1
e

i

⇣
t3

3 +x t

⌘
dt

t ! tR + i tI
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Complexify the variable 



From saddle point to Lefschetz thimble

tR

tI

SR

Saddle point integration 
!

Works extremely well for low dimensional oscillating integrals. 
!
Usually combined with an asymptotic expansion around the stationary 
point (sort of perturbative expansion).  

!
The phase is stationary +  

important contributions localized =  
good for sign problem

What about a Monte Carlo integral  
along the curves of steepest descent



Path integral and Morse theory 
E. Witten arXiv:1009.6032 (2010)

�

RR

H\R K(\)IJ(\) z = x + i y
�

C
H^R K(^)IJ(^)Complexify  

the degrees of freedom

Deform appropriately the 
original integration path 
(Morse theory)

for each stationary point pσ  the Lσ (thimble) is the union 
of the paths of steepest descent that fall in  pσ at ∞

L�

C =
�

�

R�L� the thimbles provide a basis of the relevant 
homology group, with integer coefficients

�

C
H^R K(^)IJ(^) =

�

�

R�

�

L�

H^RK(^)IJ(^)

Generalization of the 
one dimensional SD to 
n-dim problems is 
called Lefschetz thimble

Lefschetz thimble on a lattice



Path integral and Morse theory 
E. Witten arXiv:1009.6032 (2010)

�

RR

H\R K(\)IJ(\) z = x + i y
�

C
H^R K(^)IJ(^)Complexify  

the degrees of freedom

Deform appropriately the 
original integration path 
(Morse theory)

Lefschetz thimble on a lattice

tR

tI

steepest descent

steepest ascent

�

C
H^R K(^)IJ(^) =

�

�

R�

�

L�

H^RK(^)IJ(^)

# of intersections between steepest 
ascent and original integration domain



Lefschetz thimble on a lattice

Lefschetz thimbles and QFT 

Can we use the thimble basis to compute 
the path integral for a QFT ?

In principle yes but we have to discuss “the details”

hOi =
R
C
Q

x

d�
x

e�S[�]O[�]R
C
Q

x

d�
x

e�S[�]
hOi =

P
�

n
�

R
J�

Q
x

d�
x

e�S[�]O[�]
P

�

n
�

R
J�

Q
x

d�
x

e�S[�]



Lefschetz thimble on a lattice

Lefschetz thimbles and QFT 

hOi =
R
C
Q

x

d�
x

e�S[�]O[�]R
C
Q

x

d�
x

e�S[�]
hOi =

P
�

n
�

R
J�

Q
x

d�
x

e�S[�]O[�]
P

�

n
�

R
J�

Q
x

d�
x

e�S[�]

Computing the contribution from all the thimbles  
is probably not feasible

On a Lefschetz thimble the imaginary part of the action is constant 
but the measure term does introduce a new residual phase, due to the 
curvature of the thimble



Lefschetz thimble on a lattice

Lefschetz thimbles and QFT 
the residual phase

  Does it lead to a sign problem?
No formal proof but ...

dΦ=1 at leading order and <dΦ> ≪1 are strongly 
suppressed  by e-S
there is strong correlation between phase and weight 
(precisely the lack of such correlation is the origin of the 
sign problem)
In fact this residual phase is completely neglected in the 
saddle point method

Additional phase coming from the Jacobian of 
the transformation between the canonical 
complex basis and the tangent space to the 
thimble

hOi =
R
J0

Q
x

d�
x

e�S[�]O[�]
R
J0

Q
x

d�
x

e�S[�]



Lefschetz thimble on a lattice

Lefschetz thimbles and QFT 
the residual phase

  Does it lead to a sign problem?
Hopefully not but nevertheless the calculation of that phase 
cannot be avoid!

highly demanding in terms of computation power

H. Fujii et al JHEP 1310 (2013) 147
Next talk: Y Kikukawa

Additional phase coming from the Jacobian of 
the transformation between the canonical 
complex basis and the tangent space to the 
thimble

hOi =
R
J0

Q
x

d�
x

e�S[�]O[�]
R
J0

Q
x

d�
x

e�S[�]



Lefschetz thimble on a lattice

Lefschetz thimbles and QFT 

hOi =
R
C
Q

x

d�
x

e�S[�]O[�]R
C
Q

x

d�
x

e�S[�]
hOi =

P
�

n
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R
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Q
x

d�
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P

�

n
�

R
J�

Q
x

d�
x

e�S[�]

Computing the contribution from all the thimbles  
is probably not feasible

Is it necessary in order to have the correct physics? 

I will try to convince you that in many cases we can 
consider only one thimble



Lefschetz thimble on a lattice

Lefschetz thimbles and QFT 
choosing the stationary point

The study of the stationary points of the complexified theory is mandatory  
and has to be done on a case-by-case

The system has a single global minimum?

There are degenerate global minima, that 
are however connected by symmetries?
There are degenerate global minima, with 
vanishing probability of tunneling?

These cases  
are good!

There is a large number of stationary points 
that accumulate near the global minimum 
giving a finite contribution?

This case  
can be bad!



Lefschetz thimble on a lattice

Lefschetz thimbles and QFT 
choosing the stationary point

hOi =
P

�

n
�

R
J�

Q
x

d�
x

e�S[�]O[�]
P

�

n
�

R
J�

Q
x

d�
x

e�S[�]

This is an exact reformulation of the original 
path integral. 
For a QFT reproducing the original integral 
is both impractical and unnecessary 

Consider the stationary point with the lower value 
of the real part of the action and with nσ≠0 
Define a QFT on the thimble attached to this point. If

The degrees of freedom are the same
The symmetries are the same
The same perturbative expansion
The same continuum limit

By universality this is a legitimate regularisation of the original QFT



Lefschetz thimble on a lattice

Lefschetz thimbles and QFT 
choosing the stationary point

hOi =
P

�

n
�

R
J�

Q
x

d�
x

e�S[�]O[�]
P

�

n
�

R
J�

Q
x

d�
x

e�S[�]

This is an exact reformulation of the original 
path integral. 
For a QFT reproducing the original integral 
is both impractical and unnecessary 

Consider the stationary point with the lower value 
of the real part of the action and with nσ≠0 
Define a QFT on the thimble attached to this point. If

The degrees of freedom are the same
The symmetries are the same
The same perturbative expansion
The same continuum limit

By universality this is a legitimate regularisation of the original QFT

Universality is not a 
theorem BUT it is an 
assumed property 
studying QFTs on a 
lattice



Lefschetz thimble on a lattice

Lefschetz thimbles and QFT 
choosing the stationary point

Consider the stationary point with the lower value 
of the real part of the action and with nσ≠0 
Define a QFT on the thimble attached to this point. If

The degrees of freedom are the same
The symmetries are the same
The same perturbative expansion
The same continuum limit

By universality this is a legitimate regularisation of the original QFT

Universality is not a 
theorem BUT it is an 
assumed property 
studying QFTs on a 
lattice

hOi =
P
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n
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R
J�

Q
x

d�
x

e�S[�]O[�]
P
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n
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R
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Q
x
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hOi =

R
J0

Q
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Q
x
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Lefschetz thimble: algorithm

Is it numerically applicable to QFT’s on a Lattice?

Before applying the idea to full QCD we choose to 
start from something more manageable: we consider 
here integration on the Lefschetz thimbles for the 
case of 
  
      a 0 dimensional field theory with U(1) 
symmetry 
   
      the four dimensional scalar field with a 
quartic interaction

Integration on a Lefschetz thimble 
M. C., F. Di Renzo and L. Scorzato  
PRD86, 074506 (2012)



Lefschetz thimble: algorithm

Langevin 

d�R
i (⌧)

d⌧
= ��SR(�(⌧))

��R
i (⌧)

+ ⌘Ri (⌧)

d�I
i (⌧)

d⌧
= ��SR(�(⌧))

��I
i (⌧)

+ ⌘Ii (⌧)

d⌘i(⌧)

d⌧
=

X

k

⌘(⌧)k@k@jSR

projection of the noise 
 on the tangent space

Metropolis 

d�i(r)

dr
=

1

r

�S

��i(r)
�i(n+ 1) = �i(n) + �r

�S

��i

H. Fujii et al JHEP 1310 (2013) 147
Next talk: Y Kikukawa

Other methods (example HMC)  

PRD Rapid 88, 051501 (2013)

PRD Rapid 88, 051502 (2013)



Lefschetz thimble: algorithm

Langevin 

d�R
i (⌧)

d⌧
= ��SR(�(⌧))

��R
i (⌧)

+ ⌘Ri (⌧)

d�I
i (⌧)

d⌧
= ��SR(�(⌧))

��I
i (⌧)

+ ⌘Ii (⌧)

We want to compute this:

hOi = 1

Z0
e�iSI

Z

J0

Y

x

d�
x

e�SR[�]O[�]

constant on J0

boundend from below on J0

We can use a Langevin 
algorithm but how can 
we stay on the thimble?

preserve J0 
by  

construction
Need to be 
projected on 
the tangent 
space to J0

PRD Rapid 88, 051501 (2013)



Lefschetz thimble: algorithm

Langevin 

d�R
i (⌧)

d⌧
= ��SR(�(⌧))

��R
i (⌧)

+ ⌘Ri (⌧)

d�I
i (⌧)

d⌧
= ��SR(�(⌧))

��I
i (⌧)

+ ⌘Ii (⌧)

We can use a Langevin 
algorithm but how can 
we stay on the thimble?

preserve J0 
by  

construction
Need to be 
projected on 
the tangent 
space to J0

projection of the noise 
 on the tangent space

d⌘i(⌧)

d⌧
=

X

k

⌘(⌧)k@k@jSR

The tangent space  at the stationary point is easy to compute 
!
We can get tangent vectors at any point if we can transport the noise along the 
gradient flow so that it remains tangent to the thimble 

L@SR(⌘) = 0 [@SR, ⌘] = 0

PRD Rapid 88, 051501 (2013)



Lefschetz thimble: algorithm

Langevin 

d�R
i (⌧)

d⌧
= ��SR(�(⌧))

��R
i (⌧)

+ ⌘Ri (⌧)

d�I
i (⌧)

d⌧
= ��SR(�(⌧))

��I
i (⌧)

+ ⌘Ii (⌧)

d⌘i(⌧)

d⌧
=

X

k

⌘(⌧)k@k@jSR

Start from the global minimum of the 
real part of the action, generate a noise 
vector projected on the thimble and 
follow the steepest ascent
Perform a Langevin step using the noise 
evolved along the steepest descent and 
compute the observables

Go back along the steepest descent 
until you are in a region where  
quadratic approx. is valid and then 
project the configuration on the thimble

Generate a new noise and go 
back along the steepest ascent

* in the plot you have -SR that is the exponent in the 
integrand of the partition function : where I wrote ascent 
(descent) you see the opposite in the figure 

hOi = 1

Z0
e�iSI

Z

J0

Y

x

d�
x

e�SR[�]O[�]

PRD Rapid 88, 051501 (2013)



Lefschetz thimble: algorithm

Langevin on the Lefschetz thimble  
vs Complex Langevin 

d�R
i (⌧)

d⌧
= ��SR(�(⌧))

��R
i (⌧)

+ ⌘Ri (⌧)

d�I
i (⌧)

d⌧
= ��SR(�(⌧))

��I
i (⌧)

+ ⌘Ii (⌧)

Lefschetz Langevin

-1 0 1 2 3 4 5
-3

-2

-1

0

1

2

3

fR

f I

d�R
i (⌧)

d⌧
= ��SR(�(⌧))

��R
i (⌧)

+ ⌘Ri (⌧)

d�I
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��I
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+ ⌘Ii (⌧)

Complex Langevin
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2

3

fR

f I

The relation between 
the two approaches 
should be studied 
carefully!



Lefschetz thimble: algorithm

Metropolis 

ηreal are the direction of steepest descent of SR and the equations of 
steepest descent of η for the Gaussian action can be explicitly solved in term 
of a new parameter r=e-τ

In the neighbourhood 
of a critical point

S[�] = S[�0] + SG[⌘] +O(|⌘|3)
SG =

1

2

X

k

�k⌘
2
k

�i = �0
i +

X

k

wki⌘k

G0 is the flat thimble 
associated to the gaussian 
action SG

The λ and w are 
solutions of Hwk = �kw̄k where H is the Hessian

d⌘k
dr

=
1

r

¯@SG

@⌘k
=

1

r
�k⌘k ⌘k / r�k

but for r=ε infinitesimal 
the Lefschetz and 
Gaussian thimbles coincide

�i(✏) = �0
i +

X

k

✏�kwki⌘k

d�i

dr
=

1

r

@̄S

@�i
r 2 [✏, 1]

Start with a random 
real η vector, compute 
Φ(ε) and evolve using 
steepest descent

PRD Rapid 88, 051502 (2013)



Lefschetz thimble: algorithm

Metropolis 

η n-dim random vector living on the 
manifold defined by the 
eigenvectors of the Hessian 
computed at the critical point with 
positive eigenvalues

|η| distance along the thimble

d�i(r)

dr
=

1

r

�S

��i(r)

�i(n+ 1) = �i(n) + �r
�S

��i

|η|/δr number of steps along the steepest 
descent

In the neighbourhood 
of a critical point

S[�] = S[�0] + SG[⌘] +O(|⌘|3)
SG =

1

2

X

k

�k⌘
2
k

�i = �0
i +

X

k

wki⌘k

G0 is the flat thimble 
associated to the gaussian 
action SG

The λ and w are 
solutions of Hwk = �kw̄k where H is the Hessian

PRD Rapid 88, 051502 (2013)



Lefschetz thimble: algorithm

Gaussian thimble 

Gaussian manifold: 
flat manifold defined by the directions of 
steepest descent at the critical point  

Lefschetz thimble

�r ! 0

Decreasing δr your manifold get closer and closer to the Lefschetz thimble 

|η|/δr = N number of steps along the steepest 
descent

If the action decreases fast away from the stationary point 
integrating on the Gaussian thimble can be sufficient



S = �i
�

2

�
U + U�

1

�
= �i� cos�

hei�i = i
J1(�)

J0(�)

ACTION

OBSERVABLE

hO(�)i =
P

� m�

R
J�

d�O(�)e�S(�)

P
� m�

R
J�

d�(�)e�S(�)

On the thimble

constant on the thimble

Can be seen as the limiting case of the more 
interesting three-dimensional XY model

One dimensional problem: the integration on the Lefschetz 
thimble can be plotted

SR = �� sin�R sinh�I

SI = �� cos�R cosh�I

PRD Rapid 88, 051502 (2013)
U(1) one plaquette model



U(1) one plaquette model

Exact thimbles: have to pass from the critical point 
and the imaginary part of the action has to be 
constant

SI(⌧) = �� cos�R(⌧) cosh�I(⌧) = Scp
I

THIMBLES

CRITICAL POINTS

The stationary points are in (0,0) and (π,0) and the 
thimble can be computed also analytically

PRD Rapid 88, 051502 (2013)



Gaussian manifold

Increasing the accuracy in the 
integration of the steepest descent 
we move closer to the exact 
thimble

The stationary points are in (0,0) and (π,0) and the 
thimble can be computed also analytically

In order to perform the integration on the thimble we use a 
Metropolis algorithm

U(1) one plaquette model
PRD Rapid 88, 051502 (2013)



hei�i = i
J1(�)

J0(�)

OBSERVABLE

There are parameter regions where 
integration on the Gaussian 
manifold is sufficiently accurate

U(1) one plaquette model
PRD Rapid 88, 051502 (2013)



Residual phase is well under control and is not a source 
of additional sign problem (at least in this case)

hO(�)i =
P

� m�

R
J�

d�O(�)e�S(�)

P
� m�

R
J�

d�(�)e�S(�)

There is an additional phase coming from the 
Jacobian of the transformation between the 
canonical complex basis and the tangent space 
to the thimble

This phase should be essentially 
constant over the portion of 
phase space which dominates the 
integral.
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FIG. 2. Expectation value of ei� as a function of �.
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FIG. 3. The residual phase as a function of the probability
measure at � = 1.

cal errors) to the analytical results for the range of �
considered. In contrast, we notice that there is a large
di↵erence between the analytical result and those from
Monte Carlo if the field configurations are sampled from
the flat Gaussian thimble.

Finally, we discuss the residual phase in the context
of the U(1) one-plaquette model. The question of the

residual phase is an important one. We expect it to pro-
duce a milder sign problem (if at all), than the original
sign problem. Nevertheless, it should be included in any
quantitative estimate. In our formulation the full (com-
plex) measure of integration is given by det

⇥
J�
⌘

⇤
e�S .

The full integrals on the Lefschetz thimble are always
real. This means that sin

�
arg

�
det

⇥
J�
⌘

⇤
e�S

 �
does not

contribute to the integral. The statement that the sign
problem in our method is mild (or absent) means that
cos

�
arg

�
det

⇥
J�
⌘

⇤
e�S

 �
(residual phase) will vary very

little (or not at all), in the region where
��det

⇥
J�
⌘

⇤
e�S

��
(probability measure) is significant.
For the U(1) one-plaquette model, the Jacobian of the

transformation on each thimble is a single number and is
simply given by,

J�
⌘ =

�i� sin�

⌘
. (29)

In Fig. 3 we show the residual phase vs the positive prob-
ability measure for this model. We see that the residual
phase changes by very little for variations of the probabil-
ity measure spanning many orders of magnitude. More-
over, the fluctuations of the residual phase grow milder
as the true thimble is approached starting from the Gaus-
sian thimble. Most importantly, the residual phase keeps
the same sign throughout the full domain of integration,
i.e., there is no sign problem for our method for this par-
ticular model. This is reassuring, although it is impos-
sible to extrapolate from this simple model any claim
about the residual phase on systems with many degrees
of freedom.
Conclusions — In this paper we have described a new

stable algorithm to sample field configurations on the
Lefschetz thimble. We applied this method to the one
plaquette model with U(1) symmetry. Our results are
in perfect agreement with the exact results from analyt-
ical integration. Also, the residual phase remains quasi-
constant over configurations with large weight, indicating
that our method does not su↵er from a sign problem for
this system. Further optimization of the algorithm in or-
der to apply it to more challenging problems with a large
number of degrees of freedom is underway.
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λΦ4  theory on the lattice

Silver Blaze problem 
when T=0 and μ<μc physics is 
independent from the chemical potential

μ

T

μc

<n>=0

<n>≠0

We will study the system at zero temperature

Continuum action
7[�, ��] =

�
H�\(|���|� + (Q� � µ�)|�|� + �|�|� + µ(����� � ���

��)
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Lattice action: 
chemical potential introduced as  
an imaginary constant vector 
potential in the temporal direction

7[�, ��] =
�

\

[(�H + Q�)��
\�\ + �(��

\�\)
�

�
��

�=�

(��
\ I

�µ��,��\+�̂ + ��
\+�̂I

µ��,��\))

Continuum action
7[�, ��] =

�
H�\(|���|� + (Q� � µ�)|�|� + �|�|� + µ(����� � ���

��)

in term of real fields �E(E = �, �) � =
��
�
(�� + M��)

7[�E] =
�

\

�
�
�
(�H + Q�)��E,\ +

�

�
(��E,\)

� �
��

�=�

�E,\�E,\+̂M

� cosh µ �E,\�E,\+�̂ + M sinh µ �EF�E,\�F,\+�̂

�

λΦ4  theory on the lattice
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7[�, ��] =

�
H�\(|���|� + (Q� � µ�)|�|� + �|�|� + µ(����� � ���

��)

�O�full =

�
D�|e�S |ei�O�
D�|e�S |ei�

=
�ei�O�pq

�ei��pq

0

0

�O�pq =

�
D�|e�S |O�
D�|e�S |

PHASE QUENCHED

Let us try ignoring the phase

λΦ4  theory on the lattice
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PHASE QUENCHED

7[�, ��] =

�
H�\(|���|� + (Q� � µ�)|�|� + �|�|� + µ(����� � ���

��)
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λΦ4  on a Lefschetz thimble

On the Lefschetz thimble  
M. C., F. Di Renzo, A. Mukherjee and L. Scorzato  
arXiv:1303.7204 (2013)

Fields are complexified

The integration on the thimble performed with a Langevin 
algorithm

�a ! �R
a + i�I

a

In this case calculations in Gaussian approximation are sufficient 
to obtain the exact result

PRD Rapid 88, 051501 (2013)



Silver Blaze 
!
solving sign problem we have the correct physics
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Comparison with 
Worm Algorithm 
(courtesy of C. Gattringer 
and T. Kloiber) 
!

�n� =
1

V

� ln Z

�µ
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What about QCD?

Consider the stationary point with the lower value 
of the real part of the action and with nσ≠0 
Define a QFT on the thimble attached to this point. 

In QCD this is the trivial vacuum

A

a
⌫(x) ! A

a,R
⌫ (x) + iA

a,R
⌫ (x) a = 1...N�1

cComplexification:

SU(3)4V ! SL(3,C)4V

Covariant derivative: r
x,⌫,a

F [U ] :=
@

@↵

F [ei↵Ta
U

⌫

(x)]|↵=0

r
x,⌫,a

= rR

x,⌫,a

� irI

x,⌫,a

r
x,⌫,a

= rR

x,⌫,a

+ irI

x,⌫,a

Equation of steepest descent: d

d⌧
U

⌫

(x; ⌧) = (�iT

a

r
x,⌫,a

S[U ])U
⌫

(x; ⌧)

All the ingredients are there

Defining the thimble for gauge theories is possible: substitute the concept of non-
degenerate critical point with  that of non-degenerate critical manifold 



What about QCD?

The symmetries are the same? Yes

It can be proved starting from the invariance of 
the SD equation:

d

d⌧
U

⌫

(x; ⌧) = (�iT

a

r
x,⌫,a

S[U ])U
⌫

(x; ⌧)

Under gauge transformations it changes as:

(T
a

r
x,⌫,a

S[U ]) ! (⇤(x)�1)†(T
a

r
x,⌫,a

S[U ])⇤(x)†

U⌫(x) ! ⇤(x)U⌫(x)⇤(x+ ⌫̂)�1

The full SD equation is invariant only under the SU(3) subgroup of SL(3,C)
this is very interesting: the gauge links are not in SU(3) but the gauge 
invariance is exactly the same!

The perturbative expansion is the same? Yes
It is an expansion around the trivial vacuum where the integrand in the 
partition function has the form of a gaussian times polynomials 
(let me skip the details)



Something else  on a Lefschetz thimble

Next steps

- Theoretical questions (single thimble, 
residual phase, reflection positivity ... ) 
!
- 0-dim Φ4 (finished) 
!
- Chiral random matrix theory 
!
- Thirring model 
!
- Hubbard model (repulsive almost done) 
!
- SU(3) pure gauge with theta term 
!
- QCD in 0+1 dimension 
!
- . . . 
!
- QCD



thank you


