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Phase structure of QCD  
at high temperature and density  

 
• Phase transition lines 
• Critical point 
• Equation of state 
• Thermodynamic 

quantities 
 
 

Lattice QCD Simulations 
 

• Direct simulation:  
Impossible at µ≠0. 
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Heavy-ion collisions at RHIC and LHC 

• Beam energy scan at RHIC 
– Fluctuations 
– Higher order cumulant                        M. Kitazawa 
– Bryon number distribution 
– Canonical partition function                A. Nakamura 
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RHIC Beam Energy Scan 
• Investigate the density dependence changing the beam energy 

4 

STAR, 2012 
BES-I 
 
BES-II: planning 



Cumulants of conserved charges 
BNL-Bielefeld, Phys. Rev. Lett. 109, 192302 (2012) 

• Taylor expansion 
method 

mean value 
 

 deviation 
 

 skewnes 
Mukherjee, PoS CPOD2013, 039 (2013) 

QQ nM =

( )22
QQ nδ=σ

( ) 33
QQQ nS σδ=
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Heavy-ion collisions at RHIC and LHC 

• Hydrodynamics in HIC 
– Equation of State: Energy density, Pressure 

                                      T. Umeda 

– Energy-Momentum tensor from Wilson flow: useful? 
                                 T. Hatsuda, H. Suzuki 

– Transport coefficients: Viscosity etc. 
    ??? 
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Viscosity in QGP 

• Viscose Hydrodynamics calculation 

    e.g. 

• Lattice calculation: in the stage 
of quenched approximation 

Kovtun, Son, Starinets, PRL 94, 111601 (2005) 

( )
08.0       
41

≈
π=η s

Lower limit 

12.0≈η s
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Nature of the phase transitions 
in terms of quark masses 

• 2-flavor QCD: the chiral limit 
– O(4) universality crass or First order transition 
– UA(1) symmetry?          S. Aoki, Y. Taniguchi 

• 3-flavor QCD: critical quark mass 
– Improved staggered: very small, mPS<60MeV? 
– Improved Wilson?   Large?        Y. Nakamura 
– At the physical quark mass? 

• Finite chemical potential? 
                  S. Takeda, SE 
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O(4) 
scaling 
function 

Consistent with O(4) scaling function. 

O(4) scaling test by Nf=2 Wilson-type quark 
Iwasaki gauge + Clover Wilson (CP-PACS, PRD63.034502(2000)) 

( )
8160
734691

df
2 .N

.ct

=χ
=β

lattice
 4163 ×

)( 11 βδδ htfhM =
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M: Chiral condensation 
h:  quark mass 
t:   reduced temperature 
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Scaling test by 2+1 flavor staggered quarks 
BNL-Bielefeld, PRD80,094505(2009) 

• Fixing the strange quark mass (ms) at the physical point, they investigated the 
light quark mass (ml) dependence. 

• The scaling behavior agrees for ml/ms<1/20 (~ phisical point) 
• (Tricritical point) < ms (physical)               the first order region is very small. 

O(4)orO(2) 

Tri-critical 
point mtc 

Z(2) 

ml 
0 
0 

Physical point 

1storder 

2ndorder 

Crossover 
ms 



First order transition in 2-flavor QCD 
by staggered quarks 

• The critical line separating first order and crossover is determined 
in QCD with an imaginary chemical potential µI. 

• Extrapolate to light mass direction, the critical line crosses µI＝０. 
• But, Nt=4 
    (Bonati, D’ Elia, de Forcrand,  
      Philipsen, Sanfilippo, 
      arXiv:1311.0473, 
       Lattice 2013 proc.) 
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Quark Mass dependence of QCD phase trantion 

• The determination of the boundary of 1st order region: important.  
• On the line of physical mass, the crossover at low density       1st order 

transition at high density. 
• However, the 1st order region is very small, and simulations with very 

small quark mass are required.               Difficult to study. 
 

mud 
0 

0 ∞ 

∞ 

Physical point 

1storder 

2ndorder 

Crossover 

1storder 

ms 

Quenched Nf=2 

0=µ

µ



New and Old Approaches 

• Complex Langevin                 I-O. Stamatescu 
• Simulations on Lefschets Thimbles 

                     M. Cristoforetti, Y. Kikukawa 

• Strong Coupling effective theory      A. Ohnishi 
• Reduction formula, Lee-Yang Zero      K. Nagata 
• Reweighting method      SE 
• TBA    Handa??    
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Histogram method (Reweighting method)  
 Monte-Carlo method                 (Sg: gauge action, M: qaurk matrix) 

 Generate configurations with the probability of the Boltzmann weight.  

 

 
 Distribution function in Density of state method (Histogram method) 

X: order parameters, total quark number, average plaquette etc. 
 
 
 
 
 

 
 Expectation values 
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Effective potential Veff(X) 
Probability distribution function (histogram) 

• If W(X) is a Gaussian distribution, 
– The peak position of W(X)            (<X>) 
– The width of W(X)              susceptibilities  

 
 
 
 

• First order phase transition 
        Two phases coexists at Tc 
 

• If W(X) have two peaks, 
                                 first order transition 

• Effective potential:  
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Distribution function & the effective potential 

1st order phase transition 

Critical point ( )µ,,eff TXV

Crossover W(X): Gaussian function  
V(X): Quadratic function 

W(X): Flat 
V(X): Curvature: Zero 

W(X): Two phases coexist 
V(X): Double well potential 
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X: order parameters, total quark number, average plaquette, etc.  
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Reweighting method for plaquette distribution function 

plaquette  P (1x1 Wilson loop for the standard action) 
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• Sign problem: if        changes the sign frequently,  
 

Sign problem 
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Overlap problem 

• W is computed from the histogram. 
• Distribution function around X where 
                                  is minimized: important. 
• Veff must be computed in a wide range. 
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Distribution function in quenched simulations 
 Plaquette histogram at K=1/mq=0.        Derivative of Veff at β=5.69  

dVeff/dP =0 at the peak position of Veff (P). 
In this case, the curvature of Veff  is independent of β.  
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4243
site ×=N
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First order phase transition 



Distribution function in a quenched simulation 
Derivative of the plaquette effective potential 

multi-point reweighting method 
• Adopting β, average with the weight of Nconf  

• Ferrenberg-Swendsen, Phys.Rev.Lett. 63, 
1195 (1989); S.E., Phys. Rev. D78, 074507 
(2008); WHOT-QCD, arXiv:1309.2445. 

Plaquette distribution function  



Distribution function in the heavy quark region 
(WHOT-QCD Collab., Phys.Rev.D84, 054502(2011); arXiv:1309.2445) 

• We study the properties of W(X) in the 
heavy quark region. 

• Performing quenched simulations + 
Reweighting. 

• We find the critical surface. 
• Standard Wilson quark action + 

plaquette gauge action, 
• 243x4 lattice 
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Order of the phase transition 
Polyakov loop distribution (2-flavor) 

54 100.2 :point  Critical −×≈κ

Effective potential of |Ω|  
on the pseudo-critical line at µ=0 

Ωχ

• The pseudo-critical line is 
determined by χΩ peak. 

 

 
 

• Double-well at small κ 
– First order transition 

• Single-well at large κ 
– Crossover 

κ～１/(quark mass) 



Polyakov loop distribution in the complex plane 

• on βpc measured by the Polyakov loop susceptibility. 

0.04 =κ 64 100.5 −×=κ 54 100.1 −×=κ

54 105.1 −×=κ 54 100.2 −×=κ 54 105.2 −×=κ

critical point 

(2-flavor, µ=0) 

Z(3) symmetric 



Critical surface in the heavy quark region  
of (2+1)-flavor QCD 

Critical surface at finite density 

( )lattice 4243 ×

at κcp for 2-flavor 02.0≈
πm

Tc

crossover 

First order 

0=µ



Control Parameters in W(X) 
• Distribution function 

 
 

• Hopping parameter expansion 
 
 

• Three quantities in W:  P, ΩR, ΩI 

• Three parameters 
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Distribution function of ΩR at finite density  

• Hopping parameter expansion 
 
 

• Adopting 
• Effective potential: 

 

 
• V0 is Veff (µ=0)   when we replace 
            (at µ=0,                                                 ) 
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• Sign problem: If        changes its sign, 
 
 

• Cumulant expansion 

 

 

– Odd terms vanish from a symmetry under µ ↔ −µ (θ ↔ −θ) 
   Source of the complex phase 

 If the cumulant expansion converges,   No sign problem. 
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Cumulant expansion 

• At the critical point of phase-quenched part, the effect of higher order terms: small. 
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Effect from the complex phase factor (2-flavor) 

• Polyakov loop effective potential at various  
at the transition point.  (β* is adjusted at the transition point.) 
– Solid lines: µ=0  , i.e., 

– Dashed lines:           
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Critical surface in the heavy quark region  
of (2+1)-flavor QCD 

Critical surface at finite density 
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at κcp for 2-flavor 02.0≈
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Phase transitions in many-flavor QCD 

• 2 light quarks, many heavy quarks 
• Technicolor model 
• First order transition  
                        Electro-weak baryogenesis 
• Good test for (2+1)-flavor QCD 
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SE & Yamada, Phys. Rev. Lett. 110, 172001 (2013)  



Nature of phase transition of 2+Nf-flavor QCD 
• Assumption: Nf-flavors are heavy.     

– Hopping parameter κ expansion 

• Parameter:        

• As increasing Nf, critical mass becomes 
larger. 
 

• Tricritical scaling: the same as (2+1)-flavor 
QCD 
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33 

mud=ml 
0 

0 ∞ 

∞ 

1storder 

2ndorder 

Crossover 

1storder 

mh 

Quenched 2-flavor 

0=µ

tricritical 
point 

Nf→large Nf→large 

heavy 
quark 
mass 



( )
( ) ( ) ( )

( )
( )

( ) ( )
( )

fixed:0

ˆ6

)0,(

)0,(0

ˆ6

0,det
,det

 
ˆ

0,det
,det

 ˆ

0site

0

0

0site

Pf

ffPNf

ffPN

mM
mM

e
PP

mM
mM

ePP

PR ∏
∏

µ
≡

−δ

µ
−δ

= β−β

=µβ

=µβ

β−β

Reweighting method for plaquette distribution function 

plaquette  P (1x1 Wilson loop for the standard action) 
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First order transition point: two phases coexist 
Plaquette distribution function        

• Performing simulations of 2-flavor QCD, 
• Dynamical effect of Nf-flavors are included by the reweighting. 
• We assume Nf-flavors are heavy. 
• Hopping parameter (κ) expansion（Wilson quark） 

 
 

• Effective potential  
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Curvature of the effective potential  

• Linear term of P is irrelevant to the curvature 
• β-dependence is only in the linear term. 
• The curvature is independent of β. 

 

 
 

• If there exists the negative curvature region, 
                             First order transition (double-well potential) 
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Effective potential at h≠0 

Nf=2 p4-staggared, 
mπ/mρ≈0.7 

   [data: Beilefeld-Swansea 
Collab.,PRD71,054508(2005)] 

 
• detM: hopping 

parameter expansion. 
 

• lnR increases as 
increasing h. 

• The curvature 
increases with h. 
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Curvature of the effective potential  

• First order transition for h > 0.06 
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Nf –dependence of the critical mass  

• Critical mass increases as Nf increases. 

 

 
– When Nf is large, κ is small. Then, the hopping 

parameter (κ) expansion is good. 
– On the hand, when Nf is small, the κ-expansion is bad. 

 

• In a quenched simulation with Nt=4, the first and second terms 
becomes comparable around κ=0.18. 

• For Nf=10, Nt=4,  
– It may be applicable  for Nf~10. 
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Curvature of the effective potential at finite µ 

( ) tNNh hf 22 κ= for Wilson quarks  
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• Calculations of detM: Taylor 
expansion up to O(µ6) 

• Distribution function of the 
complex phase of detM:  
approximated by a 
Gaussian function 

 



Critical line at finite density 

• Calculations of detM: Taylor 
expansion up to O(µ6) 

• Distribution function of the 
complex phase of detM:  
approximated by a Gaussian 
function 

 

( ) tNNh hf 22 κ=

( )( )tNmNh hf 24=

for Wilson quarks  

for staggered quarks  First order 

crossover 

41 Phys. Rev. Lett. 110, 172001 (2013)  



hm1

Phase structure of (2+many)-flavor 
QCD using Wilson quark action 

2-flavor QCD simulations + reweighting 
Light quark mass dependence of the critical line 
• Trictitical scaling behavior? 
• Is there a first order transition region in 2-flavor QCD? 

52
udm

hm1

Tricritical point 
Critical points 

Tricritical scaling 
52

udm

No tricritical point Critical points 

First order transition region 

mh=0, 2-flavor 2-flavor 

or 



Light quark mass dependence (preliminary) 

h=0.05, 0.10, 0.15, 0.20, 0.25, 0.30 
• Critical point: light quark 

mass dependence is small 
in this mass region. 

• In progress  43 

 mπ/mρ≈0.58 

 mπ/mρ≈0.48 

 mπ/mρ≈0.45 



Distribution function in the light quark region 
WHOT-QCD Collaboration, in preparation,  

(Nakagawa et al., arXiv:1111.2116) 

• Perform phase quenched simulations 
• Add the effect of the complex phase by the reweighting. 
• Calculate the probability distribution function. 

 
• Goal 

– The critical point 
– The equation of state 

Pressure, Energy density, Quark number density, Quark number 
susceptibility, Speed of sound, etc. 



Probability distribution function  
by phase quenched simulation 

• We perform phase quenched simulations with the weight: 
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µ-dependence of the effective potential 
Curvature of the effective potential 

+ = 

1st order phase transition 
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Curvature of the effective potential 
• If the distribution is Gaussian,  
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• Sign problem: If        changes its sign, 
 
 

• Cumulant expansion 

 

 

– Odd terms vanish from a symmetry under µ ↔ −µ (θ ↔ −θ) 
   Source of the complex phase 

 If the cumulant expansion converges,   No sign problem. 
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Avoiding the sign problem 
(SE, Phys.Rev.D77,014508(2008), WHOT-QCD, Phys.Rev.D82, 014508(2010)) 
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Convergence in the large volume (V) limit 
The cumulant expansion is good in the following situations. 

• If the phase is given by  
– No correlation between θx. 

 

 
– Ratios of cumulants do not change in the large V limit. 
– Convergence property is independent of V, 
  although the phase fluctuation becomes larger as V increases. 
– The application range of µ can be measured on a small lattice. 
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Complex phase distribution  
• We should not define the complex phase in the range from -π to π. 
• When the distribution of θ is perfectly Gaussian, the average of the 

complex phase is give by the second order (variance), 
 
 
 
 

 
 
 

• Gaussian distribution  →  The cumulant expansion is good. 
• We define the phase 

 
 
– The range of θ is from -∞ to ∞. 
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Integral method for the calculation of the quark 
determinant 

Real part                 Imaginary 
part 

( )T
M

µ∂
∂ detln

lattice 483 ×

8.0
50.1

=
=β

ρπ mm

2-flavor QCD 
Iwasaki gauge  
+ clover Wison 

quark action 
 

Random noise 
method is used. 
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Distribution of the complex phase 

• Well approximated by a Gaussian function. 
• Convergence of the cumulant expansion: good. 
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Simulations 

• Simulation point in the (β, µ0/T)  
 
• Peak of W0(P,F) for each µ 

lattice 483 × 8.0≈ρπ mm

2-flavor QCD Iwasaki gauge  
+ clover Wilson quark action 
Random noise method is used. 



Curvature of the effective potential -lnW0 

• The curvature for F decreases as µ increases. 



Effect from the complex phase 

• Rapidly changes around the pseudo-critical point. 



Critical point at finite µ 

• zero curvature: expected at a large µ. 



Curvature of the effective potential 
• Without the complex phase effect   

( ) ( )
F

NFP
F

W
χ

≈
∂
−∂ site

2
0

2

,ln ( )2
site FFNF −=χ



Phase average 
• 2nd order cumulant   
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Curvature of the effective potential 
• The effect of the phase incruded. 

zero curvature 
Critical point  



Peak position of W(P,F) 
• The slopes are zero at 

the peak of W(P,F). 
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Phase quenched simulation 

• When µu=−µd, pion condensation occurs. 
•                    is suggested in the pion 

condensed phase by phenomenological 
studies. [Han-Stephanov ’08, Sakai et al. ‘10] 

          No overlap between W(µ) and W0(µ). 
 

• Near the phase boundary, 

– large fluctuations in θ: expected. 
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Summary 
• We discussed the QCD phase transition in the heavy quark region. 
          WHOT-QCD(H. Saito, S. Ejiri, S. Aoki, K. Kanaya, Y. Nakagawa, H. Ohno, K. Okuno, and T. Umeda), arXiv:1309.2445 
          S. Ejiri, Euro. Phys. J. A 49, 86 (2013) [arXiv:1306.0295] 

– The critical surface in the heavy quark region of (2+1)-flavor QCD is computed. 

• We investigated the phase structure of (2+Nf)-flavor QCD. 
         S. Ejiri & N. Yamada, Phys. Rev. Lett. 110, 172001 (2013)  [arXiv:1212.5899] 

– This model is interesting  for the feasibility study of the electroweak 
baryogenesis in the technicolor scenario. 

– An appearance of a first order phase transition at finite temperature is 
required for the baryogenesis.  

– Applying the reweighting method, we determine the critical mass of heavy 
flavors terminating the first order region. 

• The critical mass becomes larger with Nf. 
• The first order region becomes wider as increasing µ.  

• This may be a good test for the determination of boundary of the 
first order region in (2+1)-flavor QCD at finite density. 
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