Lattice energy-momentum tensor from the Yang-Mills gradient flow

Hiroshi Suzuki
Kyushu University

2013/10/16 JICFuS seminar on non-perturbative physics @ Osaka University

- H.S., work in progress
Lattice field theory and the energy-momentum tensor (EMT)

- Lattice field theory

best successful non-perturbative formulation of QFT; keeps internal gauge symmetries exactly

... but quite incompatible with spacetime symmetries (translation, rotation, SUSY, conformal, ...)

Ward–Takahashi (WT) relation associated with translational invariance ($T_{\mu\nu}(x)$: energy-momentum tensor (EMT))

$$\langle \partial_\mu T_{\mu\nu}(x)O(y)O(z)\cdots \rangle = -\delta(x-y) \langle \partial_\nu O(y)O(z)\cdots \rangle + \cdots$$

can we construct lattice EMT which reproduces these relations in $a \to 0$?

if this is possible, the application will be vast (thermodynamics, viscosities, conformal field theory, dilaton physics, vacuum energy, ...)

Hiroshi Suzuki (Kyushu University)
Naive construction will not work . . .

- naive EMT for the pure Yang–Mills theory

\[
T_{\mu\nu}(x) = \frac{1}{g_0^2} \left[F^a_{\mu\rho}(x) F^a_{\nu\sigma}(x) - \frac{1}{4} \delta_{\mu\nu} F^a_{\rho\sigma}(x) F^a_{\rho\sigma}(x) \right]
\]

- a correct WT relation: \(\langle \partial_\mu T_{\mu 1}(x) T_{01}(0) \rangle = C \partial_0 \delta(x) \)
- Monte Carlo computation of LHS \((x = (x_0, 0, 0, 0))\)

- extremely noisy . . .
- (although consistent with 0) it appears diverging as \(a \to 0\)
- after all, there is no guarantee that the naive expression is conserved for \(a \to 0\), since lattice regularization breaks translational invariance
Possible approaches

- Invent somehow a lattice formulation that is invariant under the desired symmetry (in the present case, translation) as the lattice chiral symmetry on the basis of the Ginsparg–Wilson relation.

- This is certainly ideal, but seems formidable for spacetime symmetries . . . (eventually, SLAC derivative?)

- What the general argument says is that a linear combination of dim. 4 operators being consistent with lattice symmetry

\[T_{\mu\nu}(x) = C_1 \left(\sum_{\rho} F_{\mu\rho}^a F_{\nu\rho}^a - \frac{1}{4} \delta_{\mu\nu} \sum_{\rho\sigma} F_{\rho\sigma}^a F_{\rho\sigma}^a \right) + C_2 \delta_{\mu\nu} \sum_{\rho\sigma} F_{\rho\sigma}^a F_{\rho\sigma}^a + C_3 \delta_{\mu\nu} \sum_{\rho} F_{\mu\rho}^a F_{\nu\rho}^a \]

is conserved in \(a \to 0 \); we may determine ratios of these coefficients by the conservation law (Caracciolo et al. (1989))

- Overall normalization should be fixed separately (expectation value in a one-particle state? current algebra?)

- No one yet studied whether this construction generates correct translations on composite operators!

- Approach on the basis of SUSY algebra and Ferrara–Zumino supermultiplet (H.S. (2012))
Our approach

- Use a UV finite quantity that can be related with EMT in a translationally invariant regularization
- Any regularization (including lattice) will produce the same number for such a UV finite quantity
- To define this UV finite quantity, we employ the so-called Yang–Mills gradient flow
- Yang–Mills gradient flow (a diffusion equation wrt a fictitious time $t \in \mathbb{R}$)

$$\partial_t B_\mu(t, x) = D_\nu G_{\nu \mu}(t, x) = \Delta B_\mu(t, x) + \cdots, \quad B_\mu(t = 0, x) = A_\mu(x),$$

where $G_{\mu \nu}$ is the field strength of the flowed gauge potential:

$$G_{\mu \nu}(t, x) = \partial_\mu B_\nu(t, x) - \partial_\nu B_\mu(t, x) + [B_\mu(t, x), B_\nu(t, x)], \quad D_\mu = \partial_\mu + [B_\mu, \cdot]$$

- Note: the mass dimension of t is -2
Yang–Mills gradient flow or the Wilson flow

- **Yang–Mills gradient flow (continuum theory)**

 \[\partial_t B_\mu(t, x) = D_\nu G_{\nu\mu}(t, x) = \Delta B_\mu(t, x) + \cdots, \quad B_\mu(t=0, x) = A_\mu(x) \]

- **Wilson flow (lattice theory)**

 \[\partial_t V(t, x, \mu)V(t, x, \mu)^{-1} = -g_0^2 \partial S_{\text{Wilson}}, \quad V(t=0, x, \mu) = U(x, \mu) \]

- **Applications (Lüscher):**
 - definition of the topological charge
 - scale setting (just like the Sommer scale \(r_0 \))

 \[t^2 \langle E(t, x) \rangle \bigg|_{t=t_0} = 0.3, \quad \text{and set (for instance) } \sqrt{8t_0} = 0.5 \text{ fm} \]

 where

 \[E(t, x) \equiv \frac{1}{4} G_{\mu\nu}^a(t, x) G_{\mu\nu}^a(t, x) \]

 - define UV finite quantities ← Our usage here
 - computation of the chiral condensate
Y Yang–Mills gradient flow

\[\partial_t B_{\mu}(t, x) = D_\nu G_{\nu \mu}(t, x) + \alpha_0 D_\mu \partial_\nu B_\nu(t, x), \quad B_{\mu}(t = 0, x) = A_{\mu}(x), \]

where the second term in RHS was introduced to suppress the gauge mode; it can be seen that gauge invariant quantities are independent of \(\alpha_0 \). This can be solved formally as

\[B_{\mu}(t, x) = \int d^D y \left[K_t(x - y)_{\mu \nu} A_\nu(y) + \int_0^t ds K_{t-s}(x - y)_{\mu \nu} R_\nu(s, y) \right], \]

where \(K \) is the heat kernel and \(R \) is non-linear terms

\[K_t(z)_{\mu \nu} = \int_p e^{ipz} \left[(\delta_{\mu \nu} p^2 - p_\mu p_\nu) e^{-tp^2} + p_\mu p_\nu e^{-\alpha_0 tp^2} \right] \]

\[R_\mu = 2[B_\nu, \partial_\nu B_\mu] - [B_\nu, \partial_\mu B_\nu] + (\alpha_0 - 1)[B_\mu, \partial_\nu B_\nu] + [B_\nu, [B_\nu, B_\mu]] \]

Pictorially (cross: \(A_\mu \); open circle: flow vertex \(R \)),

\[\text{Pictorial representation:} \]

\[\text{Diagram 1:} \quad \text{Diagram 2:} \quad \text{Diagram 3:} \quad \text{Diagram 4:} \]

Hiroshi Suzuki (Kyushu University)

Lattice energy-momentum tensor...
Perturbative expansion of the gradient flow

- quantum correlation function of the flowed gauge field

\[\langle B_{\mu_1}(t_1, x_1) \cdots B_{\mu_n}(t_n, x_n) \rangle, \]

is obtained by taking the expectation value of the initial value \(A_\mu(x) \). For example, the contraction of two \(A_\mu \)'s

\[\langle \quad \otimes \quad \otimes \quad \rangle \quad = \quad \overrightarrow{\cdots} \overleftarrow{\cdots} \]

produces the propagator of the flowed field

\[\delta^{ab} g_0^2 \frac{1}{(p^2)^2} \left[(\delta_{\mu\nu} p^2 - p_\mu p_\nu) e^{-(t+s)p^2} + \frac{1}{\lambda_0} p_\mu p_\nu e^{-\lambda_0 (t+s)p^2} \right], \]

(where \(t \) and \(s \) are flow times at the end points; \(\lambda_0 \) is the conventional gauge parameter). Similarly, for

considering the contraction with the usual Yang–Mills vertex (the full circle)
Gauge invariance of the gradient flow

- Under the infinitesimal gauge transformation,
 \[B_\mu(t, x) \rightarrow B_\mu(t, x) + D_\mu \omega(t, x), \]
 the flow equation
 \[\partial_t B_\mu(t, x) = D_\nu G_{\nu\mu}(t, x) + \alpha_0 D_\mu \partial_\nu B_\nu(t, x) \]
 changes to
 \[\partial_t B_\mu(t, x) = D_\nu G_{\nu\mu}(t, x) + \alpha_0 D_\mu \partial_\nu B_\nu(t, x) - D_\mu (\partial_t - \alpha_0 D_\nu \partial_\nu) \omega(t, x) \]
- Therefore, by choosing \(\omega(t, x) \) as the solution of
 \[(\partial_t - \alpha_0 D_\nu \partial_\nu) \omega(t, x) = -\delta \alpha_0 \partial_\nu B_\nu(t, x), \quad \omega(t = 0, x) = 0, \]
 \(\alpha_0 \) can be changed as
 \[\alpha_0 \rightarrow \alpha_0 + \delta \alpha_0 \]
 That is, \(B_\mu(t, x) \)'s corresponding to different \(\alpha_0 \)'s are related by a gauge transformation
- Also, by choosing \(\omega(t, x) \) as the solution of
 \[(\partial_t - \alpha_0 D_\nu \partial_\nu) \omega(t, x) = 0, \quad \omega(t = 0, x) = \omega(x), \]
 the \(D \) dimensional gauge transformation \(\omega(x) \) can be extended to a \(D + 1 \) dimensional gauge transformation \(\omega(t, x) \) that leaves the flow equation unchanged
Correlation function of the flowed gauge field

\[\langle B_{\mu_1}(t_1, x_1) \cdots B_{\mu_n}(t_n, x_n) \rangle, \quad t_1 > 0, \ldots, t_n > 0, \]

when expressed in terms of renormalized parameters, is UV finite without the wave function renormalization

Tree-level two-point function

\[\langle \tilde{B}^a_\mu(t, p) \tilde{B}^b_\nu(s, q) \rangle \sim \delta^{ab} g_0^2 \frac{1}{(p^2)^2} \left[(\delta_{\mu\nu} p^2 - p_\mu p_\nu) e^{-(t+s)p^2} + \frac{1}{\lambda_0} p_\mu p_\nu e^{-\alpha_0(t+s)p^2} \right] \]

1-loop two point function (those containing only Yang–Mills vertices)

The last counter term comes from rewriting to renormalized parameters

\[g_0^2 = \mu^{2\epsilon} g^2 Z, \quad \lambda_0 = \lambda Z_3^{-1} \]

Usually, this becomes UV finite only by taking the wave function renormalization factor into account . . .
... here, we have also diagrams containing flow vertices

which give rise to the precisely same effect as the wave function renormalization factor

- All order proof (Lüscher–Weisz (2011))

- when a loop contains a vertex in the bulk \((t > 0)\), the loop integral contains the flow-time evolution factor

 \[\sim e^{-t\ell^2} \]

 which makes the loop integral finite; no bulk counterterm is necessary

- by using a BRS symmetry, it can be shown that all boundary \((t = 0)\) counterterms are those of the Yang–Mills theory
Correlation function of the flow gauge field

\[\langle B_{\mu_1}(t_1, x_1) B_{\mu_2}(t_2, x_2) \cdots B_{\mu_n}(t_n, x_n) \rangle, \quad t_1 > 0, \ldots, t_n > 0, \]

remains finite even for the equal-point product

\[t_1 \to t_2, \quad x_1 \to x_2, \]

the new loop always contains the flow-time evolution factor \(e^{-t_\ell^2} \) and this makes integral finite; no new UV divergence arises

This is an extremely powerful property!

\[B_\mu(t, x) B_\nu(t, x) \bigg|_{\text{Dimensional Regularization}} = B_\mu(t, x) B_\nu(t, x) \bigg|_{\text{Lattice}} \]

On the other hand, the difficulty in the present problem comes from

\[(A_R)_\mu(x) (A_R)_\nu(x) \bigg|_{\text{Dimensional Regularization}} \neq (A_R)_\mu(x) (A_R)_\nu(x) \bigg|_{\text{lattice}} \]

Using this property of the gradient flow, we relate a certain quantity defined by the gradient flow and EMT in the dimensional regularization.
EMT in the dimensional regularization

- **SU(N) Yang–Mills theory in** \(D = 4 - 2\epsilon \) **dimensions**

\[
S = \frac{1}{4g_0^2} \int d^D x \, F^a_{\mu\nu}(x) F^a_{\mu\nu}(x)
\]

- Assuming the dimensional regularization, since it preserves the translational invariance, the naive expression

\[
T_{\mu\nu}(x) = \frac{1}{g_0^2} \left[F^a_{\mu\rho}(x) F^a_{\nu\rho}(x) - \frac{1}{4} \delta_{\mu\nu} F^a_{\rho\sigma}(x) F^a_{\rho\sigma}(x) \right]
\]

fulfills the correct WT relation

\[
\langle \partial_\mu T_{\mu\nu}(x) \mathcal{O}(y) \mathcal{O}(z) \cdots \rangle = -\delta(x - y) \langle \partial_\nu \mathcal{O}(y) \mathcal{O}(z) \cdots \rangle + \cdots
\]

It follows from this that \(T_{\mu\nu}(x) \) does not receive the multiplicative renormalization

- So, with dimensional regularization, we define a renormalized (finite) EMT by subtracting VEV,

\[
\{ T_{\mu\nu} \}_R(x) = T_{\mu\nu}(x) - \langle T_{\mu\nu}(x) \rangle
\]
We consider the following dim. 4 gauge invariant combinations

\[U_{\mu\nu}(t, x) \equiv G_{\mu\rho}(t, x)G_{\nu\rho}(t, x) - \frac{1}{4}\delta_{\mu\nu}G_{\rho\sigma}(t, x)G_{\rho\sigma}(t, x) \]

\[E(t, x) \equiv \frac{1}{4}G_{\mu\nu}(t, x)G_{\mu\nu}(t, x) \]

These are quite similar to 4 dimensional EMT (Itou–Kitazawa, 2012 ~), but can we make the relationship precise?

The flow equation is a diffusion equation whose diffusion length is \(\sim \sqrt{8t} \). So, in \(t \to 0 \) limit, \(U_{\mu\nu}(t, x) \) and \(E(t, x) \) can be regarded as local operators in \(D \) dimensional \(x \) space.

Moreover, from the UV finiteness of the gradient flow, these are UV finite.

From these facts, for \(t \to 0 \), above local products can be expressed by an asymptotic series of \(D \) dimensional renormalized operators (coefficients will be finite too):

\[U_{\mu\nu}(t, x) = \alpha_U(t) \left[\{T_{\mu\nu}\}_R(x) - \frac{1}{4}\delta_{\mu\nu}\{T_{\rho\rho}\}_R(x) \right] + O(t), \]

\[E(t, x) = \langle E(t, x) \rangle + \alpha_E(t) \{T_{\rho\rho}\}_R(x) + O(t), \]

Here, we have used the fact that \(U_{\mu\nu}(x) \) is traceless for \(D = 4 \). \(O(t) \) is the contribution of operators with dim. 6 or higher.
By eliminating the trace part $\{ T_{\rho \rho} \}_R(x)$ from the above expansion,

\[
U_{\mu \nu}(t, x) = \alpha_U(t) \left[\{ T_{\mu \nu} \}_R(x) - \frac{1}{4} \delta_{\mu \nu} \{ T_{\rho \rho} \}_R(x) \right] + O(t),
\]

\[
E(t, x) = \langle E(t, x) \rangle + \alpha_E(t) \{ T_{\rho \rho} \}_R(x) + O(t),
\]

we have

\[
\{ T_{\mu \nu} \}_R(x) = \frac{1}{\alpha_U(t)} U_{\mu \nu}(t, x) + \frac{1}{4\alpha_E(t)} \delta_{\mu \nu} [E(t, x) - \langle E(t, x) \rangle] + O(t)
\]

Therefore, if we know the $t \to 0$ behavior of the coefficients $\alpha_U(t)$ and $\alpha_E(t)$, the EMT can be obtained by $t \to 0$ limit of the combination in RHS.
Renormalization group argument

- We apply
 \[\left(\mu \frac{\partial}{\partial \mu} \right)_0 \], \(\mu \): renormalization scale, 0: bare quantities fixed
 to both sides of
 \[
 U_{\mu\nu}(t, x) = \alpha_U(t) \left\{ T_{\mu\nu} \right\}_R (x) - \frac{1}{4} \delta_{\mu\nu} \left\{ T_{\rho\rho} \right\}_R (x) \right] + O(t),
 \]
 \[
 E(t, x) = \langle E(t, x) \rangle + \alpha_E(t) \left\{ T_{\rho\rho} \right\}_R (x) + O(t)
 \]
- Expressed in terms of bare quantities, LHS does not contain \(\mu \). So,
 \[
 \left(\mu \frac{\partial}{\partial \mu} \right)_0 \alpha_U(t) \left\{ T_{\mu\nu} \right\}_R (x) - \frac{1}{4} \delta_{\mu\nu} \left\{ T_{\rho\rho} \right\}_R (x) \right] = 0,
 \]
 \[
 \left(\mu \frac{\partial}{\partial \mu} \right)_0 \alpha_E(t) \left\{ T_{\rho\rho} \right\}_R (x) = 0
 \]
- Further, the EMT is not renormalized,
 \[
 \left(\mu \frac{\partial}{\partial \mu} \right)_0 \alpha_{U,E}(t) = 0
 \]
Renormalization group argument

- Introducing the β function by
 \[\beta \equiv \left(\mu \frac{\partial}{\partial \mu} \right)_0 g \]
 the above relation becomes
 \[\left(\mu \frac{\partial}{\partial \mu} + \beta \frac{\partial}{\partial g} \right) \alpha_{U,E}(t)(g; \mu) = 0 \]

- This implies that using the running coupling \bar{g} defined by
 \[q \frac{d \bar{g}(q)}{dq} = \beta (\bar{g}(q)) , \quad \bar{g}(q = \mu) = g, \]
 the coefficients do not depend on the renormalization scale:
 \[\alpha_{U,E}(t)(\bar{g}(q); q) = \alpha_{U,E}(t)(\bar{g}(q'); q'). \]

- So, we may set
 \[q = \mu, \quad q' = \frac{1}{\sqrt{8t}} \]
 and then
 \[\alpha_{U,E}(t)(g; \mu) = \alpha_{U,E}(t)(\bar{g}(1/\sqrt{8t}); 1/\sqrt{8t}) \]

- Because of the asymptotic freedom, $\bar{g}(1/\sqrt{8t}) \to 0$ for $t \to 0$ and coefficients can evaluated by the perturbation theory! (a sort of factorization)
Perturbative calculation of coefficients

- To 1-loop, we have to evaluate following flow-line Feynman diagrams

- In terms of the renormalized gauge coupling in the MS scheme,

\[
\alpha_U(t)(g; \mu) = g^2 \left\{ 1 + 2b_0 \left[\ln(\sqrt{8t\mu}) + s_1 \right] g^2 + O(g^4) \right\},
\]

\[
\alpha_E(t)(g; \mu) = \frac{1}{2b_0} \left\{ 1 + 2b_0 s_2 g^2 + O(g^4) \right\},
\]

where

\[
s_1 = \ln \sqrt{\pi} + \frac{7}{16} \approx 1.00986, \quad s_2 = \frac{109}{176} - \frac{b_1}{2b_0^2} \approx 0.197831,
\]

and \(b_0 = 11N/(48\pi^2)\) and \(b_1 = 17N^2/(384\pi^4)\) are the first two coefficients of the \(\beta\) function; we see that \(\alpha_{U,E}(t)\) are actually UV finite.
By the above RG argument,

\[
\alpha_U(t) = \bar{g}(1/\sqrt{8t})^2 \left\{ 1 + 2b_0 s_1 \bar{g}(1/\sqrt{8t})^2 + O(\bar{g}^4) \right\},
\]

\[
\alpha_E(t) = \frac{1}{2b_0} \left\{ 1 + 2b_0 s_2 \bar{g}(1/\sqrt{8t})^2 + O(\bar{g}^4) \right\},
\]

where

\[
\bar{g}(q)^2 = \frac{1}{b_0 \ln(q^2/\Lambda^2)} - \frac{b_1 \ln[\ln(q^2/\Lambda^2)]}{b_0^3 \ln^2(q^2/\Lambda^2)} + O\left(\frac{\ln^2[\ln(q^2/\Lambda^2)]}{\ln^3(q^2/\Lambda^2)} \right).
\]

Therefore,

\[
\frac{1}{\alpha_U(t)} = \frac{1}{\bar{g}(1/\sqrt{8t})^2} - 2b_0 s_1 + O(\bar{g}^2),
\]

and

\[
\frac{1}{4\alpha_E(t)} = \frac{b_0}{2} \left[1 - 2b_0 s_2 \bar{g}(1/\sqrt{8t})^2 + O(\bar{g}^4) \right].
\]
Master formula

- Gathering all the above arguments,
 \[
 \{ T_{\mu\nu} \}_R (x) \xrightarrow{t \to 0^+} \left\{ \frac{1}{\bar{g}(1/\sqrt{8t})^2} - 2b_0s_1 \right\} U_{\mu\nu}(t, x) \\
 \quad + \frac{b_0}{2} \left[1 - 2b_0s_2\bar{g}(1/\sqrt{8t})^2 \right] \delta_{\mu\nu} [E(t, x) - \langle E(t, x) \rangle] \right\},
 \]
 and we obtained a formula that extracts a correctly normalized conserved EMT from local products defined through the gradient flow.

- Correlation functions of the quantities in RHS can (in principle) be computed non-perturbatively by using lattice regularization.

- Practically, we have to take sufficiently small \(t \) in the window
 \[
 a \ll \sqrt{8t} \ll \frac{1}{\Lambda}
 \]
 and the applicability is not quite obvious . . .
Study of the feasibility by numerical experiment (gauge group $SU(2)$)

- Configuration: Wilson plaquette action, pseudo-heat bath (+ overrelaxation)
- Wilson flow: 3rd order Runge–Kutta method (Lüscher), $\epsilon = \Delta t/a^2 = 0.01$, $t/a^2 \in [0, 6]$
- Field strength $G^a_{\mu\nu}(x)$ is clover-type, symmetric difference is used
- Simulation parameters

<table>
<thead>
<tr>
<th>lattice</th>
<th>β</th>
<th>N_{config}</th>
<th>$a/\sqrt{t_0}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>16^4</td>
<td>2.64</td>
<td>100</td>
<td>0.8971(63)</td>
</tr>
<tr>
<td>24^4</td>
<td>2.80</td>
<td>100</td>
<td>0.5660(48)</td>
</tr>
<tr>
<td>32^4</td>
<td>2.91</td>
<td>100</td>
<td>0.4125(40)</td>
</tr>
</tbody>
</table>

- Here, we have introduced a reference flow time t_0 by using the expectation value of the “energy density”

$$E(t, x) = \frac{1}{4} G^a_{\mu\nu}(t, x) G^a_{\mu\nu}(t, x)$$

as

$$t^2 \langle E(t, x) \rangle \bigg|_{t=t_0} = 0.045$$
$t^2 \langle E(t, x) \rangle$ as a function of t/a^2

From these values and the perturbative calculation (Lüscher (2010))

\[
t^2 \langle E(t, x) \rangle \overset{t \to 0^+}{\sim} \frac{3(N^2 - 1)}{128 \pi^2} \bar{g}(1/\sqrt{8t})^2 \left[1 + 2b_0 c \bar{g}(1/\sqrt{8t})^2 \right],
\]

where (in the MS scheme)

\[
c \equiv \ln(2\sqrt{\pi}) + \frac{26}{33} - \frac{9}{22} \ln 3 \approx 1.60396,
\]

we estimate the perturbative running coupling $\bar{g}(1/\sqrt{8t})^2$.
Perturbative running coupling $\bar{g}(1/\sqrt{8t})^2$

We may trust this perturbative computation of $\bar{g}(1/\sqrt{8t})^2$ for the region of t in which the following “effective Λ parameter” is (almost) constant

$$\Lambda(t) \equiv \frac{1}{\sqrt{8t}} \left[b_0 \bar{g}(1/\sqrt{8t})^2 \right]^{-b_1/(2b_0^2)} e^{-1/[2b_0 \bar{g}(1/\sqrt{8t})^2]} \leftarrow 2\text{-loop}$$

$$\times \exp \left[-\frac{-b_1^2 + b_0 b_2}{2b_0^3} \bar{g}(1/\sqrt{8t})^2 - \frac{b_3^3 - 2b_0 b_1 b_2 + b_0^2 b_3}{4b_0^4} \bar{g}(1/\sqrt{8t})^4 \right] \leftarrow 4\text{-loop}$$
Study of the feasibility by numerical experiment

- $a\Lambda(t)$ as a function of t/a^2

(Ideally) we should use t/a^2 in the almost-flat region
The order of the limits is important.

First, while keeping the flow time t fixed in physical units, take the continuum limit $a \to 0$. This gives flowed values in the continuum Yang–Mills theory.

Then, to extract EMT, take a small flow time limit $t \to 0$.

We may fix t in physical units by setting

$$t^2 \langle E(t, x) \rangle = \text{const.}$$

We considered 10 combinations, $t^2 \langle E(t, x) \rangle = 0.045, 0.040, 0.035$ with 3 different lattice spacings and $t^2 \langle E(t, x) \rangle = 0.030$ on 32^4 lattice.

![Graph showing lattice energy-momentum tensor variations](attachment:points.txt)
Study of the feasibility by numerical experiment

- Example of the correlation function
 \[\langle U_{01}(t, x)U_{01}(t, 0) \rangle \quad x = (x_0, 0, 0, 0) \]

- For \(t^2 \langle E(t, x) \rangle = 0.045 \) (the upper horizontal line) and for \(t^2 \langle E(t, x) \rangle = 0.040 \) (the 2nd horizontal line)

- For \(t^2 \langle E(t, x) \rangle = 0.035 \) (the 3rd horizontal line)
Study of the feasibility by numerical experiment

- Example of the correlation function

\[\langle \partial_\mu U_{\mu 0}(t, x) E(t, 0) \rangle \quad x = (x_0, 0, 0, 0) \]

- For \(t^2 \langle E(t, x) \rangle = 0.045 \) and for \(t^2 \langle E(t, x) \rangle = 0.040 \)

- For \(t^2 \langle E(t, x) \rangle = 0.035 \)
Study of the feasibility by numerical experiment

- Example of the correlation function

\[\langle \partial_\mu \delta_{\mu 0} E(t, x) E(t, 0) \rangle \quad x = (x_0, 0, 0, 0) \]

- For \(t^2 \langle E(t, x) \rangle = 0.045 \) and for \(t^2 \langle E(t, x) \rangle = 0.040 \)

- For \(t^2 \langle E(t, x) \rangle = 0.035 \)
Although next we should make an extrapolation to \(a \rightarrow 0 \), here we proceed by regarding the \(32^4 \) results are sufficiently close to the continuum.

Remembering the \(t \rightarrow 0 \) behavior

\[
U_{\mu\nu}(t, x) = \alpha_U(t) \left[\{ T_{\mu\nu} \}_R(x) - \frac{1}{4} \delta_{\mu\nu} \{ T_{\rho\rho} \}_R(x) \right] + O(t),
\]

\[
E(t, x) = \langle E(t, x) \rangle + \alpha_E(t) \{ T_{\rho\rho} \}_R(x) + O(t),
\]

for example,

\[
\frac{1}{\alpha_U(t)\alpha_E(t)} \langle \partial_\mu U_{\mu0}(t, x)E(t, 0) \rangle \xrightarrow{t \to 0^+} \left\langle \partial_\mu \left[\{ T_{\mu0} \}_R(x) - \frac{1}{4} \delta_{\mu0} \{ T_{\rho\rho} \}_R(x) \right] \{ T_{\rho\rho} \}_R(0) \right\rangle
\]

and RHS is obtained as an \(t \rightarrow 0 \) extrapolation of LHS (Thanks, Aoki-san!)

Similarly,

\[
\frac{1}{4} \frac{1}{\alpha_E(t)^2} \langle \partial_\mu \delta_{\mu0}E(t, x)E(t, 0) \rangle \xrightarrow{t \to 0^+} \frac{1}{4} \left\langle \partial_\mu \delta_{\mu0} \{ T_{\rho\rho} \}_R(x) \{ T_{\rho\rho} \}_R(0) \right\rangle
\]

Sum of these two is

\[
\xrightarrow{t \to 0^+} \left\langle \partial_\mu \{ T_{\mu0} \}_R(x) \{ T_{\rho\rho} \}_R(0) \right\rangle
\]

and should be 0 for \(x \neq 0 \) (conservation law of EMT!)
Study of the feasibility by numerical experiment

To obtain,

\[\alpha_U(t) = \bar{g}(1/\sqrt{8t})^2 \left\{ 1 + 2b_0 s_1 \bar{g}(1/\sqrt{8t})^2 + O(\bar{g}^4) \right\}, \]

\[\alpha_E(t) = \frac{1}{2b_0} \left\{ 1 + 2b_0 s_2 \bar{g}(1/\sqrt{8t})^2 + O(\bar{g}^4) \right\} \]

we have to know \(\Lambda \) that corresponds to the initial value of the running coupling \(\bar{g}(1/\sqrt{8t}) \)

Here, as a rough estimate,

\[0.0188 \leq a\Lambda \leq 0.0200 \]

and used the 2-loop running formula
Study of the feasibility by numerical experiment

(in what follows, only show plots with $a\Lambda = 0.0188$; not much difference for $a\Lambda = 0.0200$)

$$\frac{1}{\alpha_U(t)\alpha_E(t)} \left\langle \partial_\mu U_{\mu 0}(t, x) E(t, 0) \right\rangle \xrightarrow{t \to 0^+} \left\langle \partial_\mu \left[\{ T_{\mu 0} \}_R(x) - \frac{1}{4} \delta_{\mu 0} \{ T_{\rho \rho} \}_R(x) \right] \right\rangle \{ T_{\rho \rho} \}_R(0)$$
Study of the feasibility by numerical experiment

\[
\frac{1}{4} \frac{1}{\alpha E(t)^2} \left\langle \partial_\mu \delta_\mu_0 E(t, x) E(t, 0) \right\rangle \xrightarrow{t \to 0+} \frac{1}{4} \left\langle \partial_\mu \delta_\mu_0 \left\{ T_{\rho \rho} \right\}_R (x) \left\{ T_{\rho \rho} \right\}_R (0) \right\rangle
\]
Study of the feasibility by numerical experiment

\[t \rightarrow 0^{+} \quad \langle \partial_{\mu} \{ T_{\mu 0} \}_R (x) \{ T_{\rho \rho} \}_R (0) \rangle \]

- Good indication for the EMT conservation?!!
Study of the feasibility by numerical experiment

But the situation is not so clear for . . .

\[
\frac{1}{\alpha U(t)^2} \langle \partial_\mu U_{\mu 1}(t, x) U_{0 1}(t, 0) \rangle \xrightarrow{t \to 0^+} \left\langle \partial_\mu \left[\left\{ T_{\mu 1}\right\}_R(x) - \frac{1}{4} \delta_{\mu 1} \left\{ T_{\rho \rho}\right\}_R(x) \right] \left\{ T_{0 1}\right\}_R(0) \right\rangle
\]
Study of the feasibility by numerical experiment

... and

\[
\frac{1}{4} \frac{1}{\alpha E(t) \alpha U(t)} \left\langle \partial_\mu \delta_{\mu 1} E(t, x) U_{01}(t, 0) \right\rangle \xrightarrow{t \to 0} \frac{1}{4} \left\langle \partial_\mu \delta_{\mu 1} \{ T_{\rho \rho} \}_R(x) \{ T_{01} \}_R(0) \right\rangle
\]

Hiroshi Suzuki (Kyushu University)

Lattice energy-momentum tensor ...
An example of 2 point correlation function (relevant for the shear viscosity)

\[
\frac{1}{\alpha U(t)^2} \left\langle U_{01}(t, x) U_{01}(t, 0) \right\rangle \xrightarrow{t \to 0^+} \left\langle \left\{ T_{01} \right\}_R(x) \left\{ T_{01} \right\}_R(0) \right\rangle
\]
Future direction: numerical experiment

- It seems that we had a good indication (!) although we still have to carry out . . .
- systematic extrapolation to the continuum $a \rightarrow 0$
- systematic extrapolation to $t \rightarrow 0$ (hopefully) using data with smaller flow times
- clear demonstration of the conservation of EMT
- "$O(t)$ improvement" might be useful

$$G^{a}_{\mu \rho}(t, x)G^{a}_{\nu \rho}(t, x) \rightarrow G^{a}_{\mu \rho}(t, x)G^{a}_{\nu \rho}(t, x) - t \left[D_{\sigma} D_{\sigma} G^{a}_{\mu \rho}(t, x)G^{a}_{\nu \rho}(t, x) + G^{a}_{\mu \rho}(t, x)D_{\sigma} D_{\sigma} G^{a}_{\nu \rho}(t, x) \right]$$

this replacement removes $O(t)$ terms in the tree level

- also 1-loop improvement will not be impossible (presumably)
- step size scaling for small t?
Inclusion of matter fields: flowed matter field requires the wave function renormalization (Lüscher (2013))

\[
\chi(t, x) = Z_{\chi}^{-1/2} \chi_R(t, x), \quad \bar{\chi}(t, x) = Z_{\chi}^{-1/2} \bar{\chi}_R(t, x)
\]

To avoid the determination of \(Z_{\chi}\) in lattice/continuum theory, we may define an operator by normalizing it by the “condensation” as, for example,

\[
\frac{\bar{\chi}(t, x) D_{\chi}(t, x)}{t_0^{3/2} \langle \bar{\chi}(t_0, x) \chi(t_0, x) \rangle}
\]

where \(t_0\) is an arbitrary fixed flow time. This is a dim. 4 UV finite quantity to which our argument is applied.

1-loop mixing coefficients (to be computed)

Future direction:

- Physical application? (thermodynamics, viscosities, conformal field theory, dilaton physics, vacuum energy, ...)
- For bulk thermodynamical quantities, for instance, for the so-called “trace anomaly”

\[
\langle \varepsilon - 3p \rangle_T = \left\langle - \{ T_{\mu\mu} \}_R (x) \right\rangle_T,
\]

or for the entropy density

\[
\langle \varepsilon + p \rangle_T = \left\langle - \{ T_{00} \}_R (x) + \frac{1}{3} \{ T_{ii} \}_R (x) \right\rangle_T,
\]

our definition should coincide with the traditional one (Engels–Karsch–Scheideler, (1982)) in the continuum limit
- This is the case also for other off-diagonal components (Giusti–Meyer (2013))?
- Can we define the chiral current and/or SUSY current from the gradient flow?