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Lattice field theory and the energy-momentum tensor (EMT)

|

@ Lattice field theory

"

best successful non-perturbative formulation of QFT; keeps internal gauge

symmetries exactly

@ ... but quite incompatible with spacetime symmetries (translation, rotation, SUSY,
conformal, ...)

@ Ward-Takahashi (WT) relation associated with translational invariance (7. (x):

energy-momentum tensor (EMT))

(OuTu (X)O(Y)O(2) -+ ) = =6(x = ¥) (0. 0(y)O(2) -+ +) + - -
@ conservation law is a special case of this:
(Ou T (X)O(Y)O(2)--+) =0, forx#y,x#z ...
@ can we construct lattice EMT which reproduces these relations in a — 07?

@ if this is possible, the application will be vast (thermodynamics, viscosities,
conformal field theory, dilaton physics, vacuum energy, . ..)
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Naive construction will not work . ..

@ naive EMT for the pure Yang—Mills theory

1 1
T = gy | FEAOFE (0 — 0 FEn COFZ )
0

@ a correct WT relation: (9, T,,1(x) To1(0)) = Cd(x)
@ Monte Carlo computation of LHS (x = (x, 0, 0, 0))

T6x1sbola2 640,00 u (708971 (8472 65770 damey s 20570 4338 +——
x24bota2 80I0.00"  ($1°0.5660) (84°167 7°049)(55°167.7°0.49)
et S11000" o 51°0.4126) (4 2602°0 86935638 (5 28050 SA055638) - -

@ extremely noisy ...
@ (although consistent with 0) it appears divergingas a — 0

@ after all, there is no guarantee that the naive expression is conserved for a — 0,
since lattice regularization breaks translational invariance
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Possible approaches

@ Invent somehow a lattice formulation that is invariant under the desired symmetry
(in the present case, translation) as the lattice chiral symmetry on the basis of the
Ginsparg—Wilson relation

@ this is certainly ideal, but seems formidable for spacetime symmetries ...
(eventually, SLAC derivative?)

@ What the general argument says is that a linear combination of dim. 4 operators
being consistent with lattice symmetry

1
TMV(X) = C1 (Z FiPFfp - Z(slw Z F56F§0)+CZ5MV Z FpaaF/‘Jaa+C36MV Z FiPFfﬁ
I3 po po I3

is conserved in a — 0; we may determine ratios of these coefficients by the
conservation law (Caracciolo et al. (1989))

@ overall normalization should be fixed separately (expectation value in a
one-particle state? current algebra?)

@ no one yet studied whether this construction generates correct translations on
composite operators!

@ approach on the basis of SUSY algebra and Ferrara—Zumino supermultiplet (H.S.
(2012))
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Our approach

@ Use a UV finite quantity that can be related with EMT in a translationally invariant
regularization

@ Any regularization (including lattice) will produce the same number for such a UV
finite quantity

@ To define this UV finite quantity, we employ the so-called Yang—Mills gradient flow

@ Yang-Mills gradient flow (a diffusion equation wrt a fictitious time t € R)

0B.(t,x) = D, Gy, (t, x) = AB,(t, x) +-- -, B.(t=0,x) = A.(x),
where G,.. is the field strength of the flowed gauge potential:
G (t, x) = 0uBu(t, X) — 0uBu(t, X) + [Bu(t, x), Bu(t, X)], Dy = 0u + [Bu, ']

@ Note: the mass dimension of tis —2
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Yang—Mills gradient flow or the Wilson flow

@ Yang-Mills gradient flow (continuum theory)
0B, (t,x) = D, G, (t,x) = AB,(t,x) +-- -, B.(t=0,x) = A.(x)
@ Wilson flow (lattice theory)
OVt X, )V (t, X, 1) " = —g8OSwison,  V(t = 0,x, 1) = U(x, )

@ Applications (Lischer):

o definition of the topological charge
o scale setting (just like the Sommer scale ry)

12 (E(t, x))‘t L= 0.3, and set (for instance) /8f; = 0.5fm
=l

where ;
E(ta X) = ZGpauJ(t’ X)Gftu(t» X)

o define UV finite quantities < Our usage here
e computation of the chiral condensate
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Perturbative expansion of the gradient flow

@ Yang—Mills gradient flow
8tBH(ta X) = DVGVH(tv X) + aoDMaVBV(tv X)7 Bﬂ(t = O,X) = AM(X)v

where the second term in RHS was introduced to suppress the gauge mode; it
can be seen that gauge invariant quantities are independent of . This can be
solved formally as

B0 = [ o |Ktx =) + s K o(x — V) Ru(s, n|.

where K is the heat kernel and R is non-linear terms

eipz s Cot?
Ki(2) 0 :/72 [(5uvp2 — pupv)e P + Pupr€ olp}
p P
Rp = 2[Bu7 auBy,] - [BV78HBV] + (CMO - 1)[B,ua aVBV] + [BV> [BV7 Bﬂ]]

Pictorially (cross: A.; open circle: flow vertex R),

L
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Perturbative expansion of the gradient flow

@ quantum correlation function of the flowed gauge field
<BM1 (t1 ) X1) e B#n(t”v Xn)> )

is obtained by taking the expectation value of the initial value A, (x). For example,
the contraction of two A,’s

[ e e e D A VAVAVAVAVAVAVAV)

produces the propagator of the flowed field

6abgo (p2)2 {(@wp — pup,)e” (t+8)p? + p p,e (t+s)p? 7

(where t and s are flow times at the end points; ) is the conventional gauge
parameter). Similarly, for

considering the contraction with the usual Yang—Mills vertex (the full circle)

L2
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Gauge invariance of the gradient flow

@ Under the infinitesimal gauge transformation,
B.(t, x) — Bu(t, x) + Dyw(t, x),
the flow equation
OB.(t,x) = D,Guu(t, X) + aoD,0, B, (t, X)
changes to
Bu(t,x) = D,Guu(t, x) + aoD.0. B (t, x) — D, (0 — oD, 0y )w(t, x)
@ Therefore, by choosing w(t, x) as the solution of
(0t — DL O )w(t, X) = =00y B (t, X), w(t=0,x) =0,

ap can be changed as
ag — ag + dag
That is, B,.(t, x)’s corresponding to different «’s are related by a gauge
transformation
@ Also, by choosing w(t, x) as the solution of

(0t — aoDL O )w(t, x) = 0, w(t =0,x) = w(x),
the D dimensional gauge transformation w(x) can be extended to a

D + 1 dimensional gauge transformation w(t, x) that leaves the flow equation
unchanged
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UV finiteness of the gradient flow |

@ Correlation function of the flowed gauge field
<B}‘«1(t17x1)"'Bp,n(tnyxn»7 ty >0,...,tn>07

when expressed in terms of renormalized parameters, is UV finite without the
wave function renormalization

@ tree-level two-point function
pa pb ab 2 1 P (s, 1 —ap(t+s)p?
<Bu(t,p)By(s, q)> 5 Fan {(%p — pupv)e WL

@ 1-loop two point function (those containing only Yang—Mills vertices)

s e

@ The last counter term comes from rewriting to renormalized parameters
%=1z, r=2Z"

@ Usually, this becomes UV finite only by taking the wave function renormalization
factor into account ...
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UV finiteness of the gradient flow |

@ ... here, we have also diagrams containing flow vertices

T k)

which give rise to the precisely same effect as the wave function renormalization
factor

@ All order proof (Lischer—Weisz (2011))

g

el
AT

@ when a loop contains a vertex in the bulk (t > 0), the loop integral contains the
flow-time evolution factor

2
~ e—t@

which makes the loop integral finite; no bulk counterterm is necessary

@ by using a BRS symmetry, it can be shown that all boundary (t = 0) counterterms
are those of the Yang—Mills theory
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UV finiteness of the gradient flow |l

@ Correlation function of the flow gauge field
<BH1 (t1,X1)B‘u2(t2,X2) s B,un(tn,xn» s t>0,....t2 >0,
remains finite even for the equal-point product

h — b, Xy — X,

BN &

@ the new loop always contains the flow-time evolution factor ~ e~
integral finite; no new UV divergence arises

@ This is an extremely powerful property!

* and this makes

B“(t’ X) BV(t’ X)|Dimensional Regularization — B“(t’ X) B”(t’ X)|Lattice
@ On the other hand, the difficulty in the present problem comes from

(AH)M (X) (AH)V (X) | Dimensional Regularization # (AR)M (X) (AR)V (X) | lattice

@ Using this property of the gradient flow, we relate a certain quantity defined by the
gradient flow and EMT in the dimensional regularization
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EMT in the dimensional regularization

@ SU(N) Yang-Mills theory in D = 4 — 2¢ dimensions
S = 1 dD I_—a Fa
- rgg X ;W(X) ;w(x)

@ Assuming the dimensional regularization, since it preserves the translational
invariance, the naive expression

Toul0) = 2 [ FE,00OFE(00 — (0,0 00F2 ()

0

fulfills the correct WT relation
(OuTuw(x)O(Y)O(2) ) = =6(x = ¥) (0.0(y)O(2) - ) + -+~

It follows from this that T,. (x) does not receive the multiplicative renormalization

@ So, with dimensional regularization, we define a renormalized (finite) EMT by
subtracting VEV,
{Tuw}p (%) = T (X) = (Tuw (X))
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Local product in finite flow time and EMT

@ We consider the following dim. 4 gauge invariant combinations
Ut X) = Gl (6 )G, (6 ) — 50 Gl X)Gio (8, )

E(t,x) = %wa(t, X) G (1, %)

@ These are quite similar to 4 dimensional EMT (ltou—Kitazawa, 2012 ~), but can we
make the relationship precise?

@ The flow equation is a diffusion equation whose diffusion length is ~ v/8t. So, in
t — 0 limit, U,. (¢, x) and E(t, x) can be regarded as local operators in
D dimensional x space

@ Moreover, from the UV finiteness of the gradient flow, these are UV finite

@ From these facts, for t — 0, above local products can be expressed by an
asymptotic series of D dimensional renormalized operators (coefficients will be
finite too):

U (t,x) = ay(t) |{Tuv g (X) — %%» {Too}a (x)| + O(D),

E(t,x) = (E(t, X)) + ae(t) {Tpp } 5 (x) + O(1),

Here, we have used the fact that U, (x) is traceless for D = 4. O(t) is the
contribution of operators with dim. 6 or higher
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Local product in finite flow time and EMT

@ By eliminating the trace part { T,, }r(x) from the above expansion,

U (t, %) = au(t) ({Tuw g (x) — éw{Tpp}R(X) + O(1),
E(t,x) = (E(t, X)) + ae(t) {Tpo} g (x) + O(1),
we have
1
{Tu}p(x) = (t) U (t,%) + g ) v [E(t, x) — (E(t, x))] + O(t)

Therefore, if we know the { — 0 behavior of the coefficients ay(t) and ag(t), the
EMT can be obtained by t — 0 limit of the combination in RHS
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Renormalization group argument

o We apply
(M%)O , w: renormalization scale, 0: bare quantities fixed
to both sides of
Uun () = a0(0) [ (T} () = 3 (Ton} (0] + OC0)
E(t,x) = (E(t,x)) + ae(t) {Tpo }5 (x) + O(t)
@ Expressed in terms of bare quantities, LHS does not contain u. So,

02 o) [{Tunkn (0 = 26 {Tota (0] =0,
(153 ), o | : |
(u%)o aE(t) {Top s () = 0

@ Further, the EMT is not renormalized,
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Renormalization group argument
@ Introducing the j function by
B= (ug) g
G
the above relation becomes
7] 0
(4 + 52 ) aweltlgin) = 0

@ This implies that using the running coupling g defined by

q%‘” —5(@@).  dg=u =0

the coefficients do not depend on the renormalization scale:

aue(t)(9(q); q) = ave(t)(@(d): q).
@ So, we may set

and then
aue(t)(g; 1) = ave(t)(9(1/V8t); 1/V8t)
@ Because of the asymptotic freedom, g(1/+/8t) — 0 for t — 0 and coefficients can
evaluated by the perturbation theory! (a sort of factorization)
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Perturbative calculation of coefficients

@ To 1-loop, we have to evaluate following flow-line Feynman diagrams

S A A

@ In terms of the renormalized gauge coupling in the MS scheme,
au(t)(gi 1) = & {1 +2bo [In(vBln) + 1] & + O(g") }
. _ L 2 4
ae(t)(g: 1) = 5 {1+ 20820° + 06" } .
where

109 by

7
517|n\/77r—|—ﬁ_100986, S2—m—27bg_0197831,

and by = 11N/(487?) and by = 17N?/(384r*) are the first two coefficients of the
B function; we see that ay £(t) are actually UV finite
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Perturbative calculation of coefficients

@ By the above RG argument,

au(t) = §(1/VB? {1+ 2tusi5(1/ VBN + 0(@") },

ae(t) = 5o {1+ 250%:3(1/VBY? + 0(@") .
where
_ 2 1 _ biIn[in(¢?/A?)] In2[In(g?/A?)]
99" = Byin(e/A%) B In?(q2/ne) +O< In3(g2/A%) >

@ Therefore,

1 1 _ ~2
ay(t) — g(1/v8t) 2o + 0@,
and ] by
G — 2 |1~ 2001/ VB +0(@")]
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Master formula

@ Gathering all the above arguments,

{Twtr(x) = { [ 1 - 2boS1:| U (8, X)

o1/ Bty
+ 2 [1 - 2tus:(1/VBI] 5,0 [E(t )~ (ECE x)>1},

and we obtained a formula that extracts a correctly normalized conserved EMT
from local products defined through the gradient flow

@ Correlation functions of the quantities in RHS can (in principle) be computed
non-perturbatively by using lattice regularization

@ Practically, we have to take sufficiently small ¢ in the window

]
a<<\/§<<ﬂ

and the applicability is not quite obvious . ..
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Study of the feasibility by numerical experiment (gauge group SU(2))

@ Configuration: Wilson plaguette action, pseudo-heat bath (+ overrelaxation)

@ Wilson flow: 3rd order Runge—Kutta method (Liischer), e = At/&® = 0.01,
t/a € [0,6]

o field strength G, (x) is clover-type, symmetric difference is used

@ simulation parameters

lattice 3 Neontis  @/VTo

16* 2.64 100 0.8971(63)
24* 280 100 0.5660(48) a~ 0.036fm for /o = 440 MeV
32* 291 100  0.4125(40)

@ Here, we have introduced a reference flow time f, by using the expectation value
of the “energy density”

E(tx) = LGt X) Gt )

as
2 (E(t,x))| =0.045

=l
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Study of the feasibility by numerical experiment

e t? (E(t, x)) as a function of t/&

" coefficients16x16betaz 64" U 1:23 ——
"coefficients2dx2dbela2 80" u 1:2:3 -
"coefficients3232belaz 1" u 1:2:3 -

@ From these values and the perturbative calculation (Lischer (2010))

t—o+ 3(N? — 1)

t2 (E(t,X)) 1287T2

3(1/V8) [1 + 2bocg(1/vBIY]
where (in the MS scheme)
c=In(2y7) + 26 _ 9 113~ 1.60396
- 33 22 - ’

we estimate the perturbative running coupling g(1/+v/8t)?
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Study of the feasibility by numerical experiment

@ Perturbative running coupling g(1/+/8t)?

8

7L

6L

1L

0

0 1 2 3 4 5 6

@ We may trust this perturbative computation of g(1/+/8t)? for the region of t in
which the foIIowing “effective A parameter” is (almost) constant

A1) = \F [bog(1/\r) ] ER) g et VR . loop
X exp { 7”‘223[’0"2 (1Bl — D202 £ 068 51 gty 4-to0p
0
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Study of the feasibility by numerical experiment

@ al(t) as a function of t/&?

0 1 2 3 4 5 6

(Ideally) we should use t/&? in the almost-flat region
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Study of the feasibility by numerical experiment

@ The order of the limits is important

@ First, while keeping the flow time t fixed in physical units, take the continuum
limit a — 0. This gives flowed values in the continuum Yang—Mills theory

@ Then, to extract EMT, take a small flow time limit t — 0
@ We may fix t in physical units by setting
t? (E(t, x)) = const.

@ We considered 10 combinations, #2(E(t, x)) = 0.045, 0.040, 0.035 with 3 different
lattice spacings and 2(E(t, x)) = 0.030 on 32* lattice

“coefficents 6x16beta? 64"
“costiceniszun2ivela? 80
oelfclentsa2xazbeias o1
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Study of the feasibility by numerical experiment

@ Example of the correlation function

(Uo1(t, x)Uni(t,0))

x = (X0,0,0,0)

@ For t3(E(t, x)) = 0.045 (the upper horizontal line) and for 2(E(t, x)) = 0.040 (the
2nd horizontal line)

00016,

000014

o000tz

00001

00006
s 6x16betaz 6411 24" u (51°0.8971):(52°2 364) (3°2 384 —— 123 640.92" u (510.8971) (822.384)1(53°2 J64) +——
S bt b b (810 600} 62-04 00} 5570 e spotaz 80220 (5105000 5204 94} §5-04 )
TSG2Ka2061aZ 015 88" U (51°0.4125) (521190 (81 193) - Tores2x32001a 9114 04" U (5170 4125} (52°1133) (651 193) -
00005 [y
o004

o000

00002

0001

o

Hiroshi Suzuki (Kyushu University)

00001

0003
rsteneboud chnesru o ossri sz oo e den ——
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oo S 15 55 (4170 4128) (421199155 1108) n-
00025
0002
o015
0001 W “
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Study of the feasibility by numerical experiment

@ Example of the correlation function
(0uU,0(t, x)E(t,0)) x = (X0,0,0,0)
@ For t3(E(t, x)) = 0.045 and for tZ(E(t, x)) = 0.040

oa00ts. 00006
“conelalors 6x16beta2 6411 24" u (51°0.8971)(58°2 657) (59" zésn —— “correlalors 16x1Bbetal 6410.92" u (S1°0.8971)(8872.657) (59°2.857) ——
“Coolators24x24botas 013 12" U (3170 5060) (56167 7 (89157 “conelators2axadbeta? 8012 20" (81°0 5880} (88°167.7) (55167 7
FetersSxideia i e 3104128 (582862 (5282, -+ FCorelators32x32beta 9114 04" u (51°0 4125} (58°2892) (928

oonot e e 00004

. 3
o000 ‘
J
P U ——
° »
o000z

5005
A
00001 |+ oooos |
%
00001 00006
o B B m m T B B 0 B B o 0 T

@ For t2(E(t, x)) = 0.035

0003
“cormelalors 6x16bela2 6410 65" u (§1°0.8971):(582.657) (89°2 857) ——
“conalalore2Ax24bola? 80U 43" U ($1°0 5880 (85°1677)50°157 %)
Foarelatorsapazbela? 9112 85 U (510 4125) (36°2832)(59°2892) -
0002 LY
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Study of the feasibility by numerical experiment

@ Example of the correlation function
<8M6H0E(t, X)E(ta O)>

@ For t?(E(t, x)) = 0.045 and for ?(E(t, x))

=0.

X = (X07 07 07 O)
040

oot ooots
P T T P FT ey oo sy v sl s sod sl
S i e e R o)
g o g G 108 10 SR S T SR e AR N e
oo
acer ¥

ooz
00001

3
o000 |4
o000z | )

oooa | 1

00005

00004
o

@ For t2(E(t, x)) = 0.035

00005
0001
00015
2 s ) 12 T4 o 2 0 & s 10 12 4
0008
CorelaloTsTEx1abetaz B0 65" (5150 8971) (§10°3 657)(611°2657) ——
Gorelalors28x24botas 01 43' U (81°0.5680) (S10°167 7/ (S11 167
Foareltorsapaz0eia? 9113 55 U (510 4128} ($10°2862) (5112898 -
0004
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Study of the feasibility by numerical experiment

@ Although next we should make an extrapolation to a — 0, here we proceed by
regarding the 32* results are sufficiently close to the continuum

@ Remembering the t — 0 behavior

Uun () = a0(0) (T} () = 3 {Ton} (0] + OC0)
E(t,x) = (E(t, ) + 0e(t) { Ty} () + O(),

for example,
1 -0 1
au()ae(d) (0uUo(t, x)E(t,0)) =% <8H [{Tuo}ﬁ(x) - Z5uo{Tpp}R(x)} {Ton}r (0)
and RHS is obtained as an t — 0 extrapolation of LHS (Thanks, Aoki-san!)
@ Similarly,
1 1 ox 1
4 as(0? (B,6,0E(t, X)E(t,0)) =% 2 (00610 {Tup}a () {Top 1 (0))

@ Sum of these two is ot
I <au {TuO}H (X) {TPP}R (O)>
and should be 0 for x # 0 (conservation law of EMT!)

Hiroshi Suzuki (Kyushu University) Lattice energy-momentum tensor ... 2013/10/16 @ Osaka Univ. 29/39



Study of the feasibility by numerical experiment

@ To obtain,
au(t) = .6/(1/@)2 {1 +200s13(1/v81 + 0(&")} .
ae(t) = 5o {1+ 2t02:3(1/VBY? + 0@")}
we have to know A that corresponds to the initial value of the running coupling

g(1/v8t)

0.025

" coeficients32x32beta2 91" U 1:6:7 ——
“coefficients32x32beta2.91" u 18:9 -~
00188

0.0200

0015

0005 |

0

Here, as a rough estimate,
0.0188 < aA < 0.0200
and used the 2-loop running formula
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Study of the feasibility by numerical experiment

@ (in what follows, only show plots with aA = 0.0188; not much difference for
al\ = 0.0200)

1 t—0+ 1
auaz@ (O Yot X)E(L,0)) — <8u [{Tuo}n(m—Zéuo{rpp}ﬁ(x)}{TPP}H(O)

2005 T T

torsat3800[aE 911588 51041257 200257 902753007 10 592002157 9455275:\007‘3) "dUE_interpolation” index U 123 ——
lorssxsanela2 o1t 0 (810 4126} 5o 20l sozasosaaator 5o zncaisz s9s0sosoazicr) *dUE intorpolation’ indox & U 1:2:3
relator 58 (51-0.4755) 402855116 935508940508 [59'250546 S53883540838) 1 *dUE intrpolation’ indox 7 U 1233 1
orST GO0 51114071 (51°041 555 (85 2565141 04050175 1544) (35 2606141 60agao 171040 5 | 115005 |- 4UE nerpoaton index3u 123 5
&
1005 |- . 1 1005 |-
b i st
5006 - f 1 5006 -
[ R ¢
X S
0 s R P S j ol
(R
5006 1 1 506 |-
[ .
deos & 1 105 |- 1
15605 : 1 15005 |- 1
2005 i . . . . . 2005 . . . . .
0 2 4 6 0 10 12 14 o 1 2 3 4 5 6
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Study of the feasibility by numerical experimen
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Study of the feasibility by numerical experiment
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@ Good indication for the EMT conservation?!!
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Study of the feasibility by numerical experiment

@ But the situation is not so clear for . ..
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Study of the feasibility by numerical experimen
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Study of the feasibility by numerical experiment

@ An example of 2 point correlation function (relevant for the shear viscosity)
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Future direction: numerical experiment

It seems that we had a good indication (!) although we still have to carry out ...
systematic extrapolation to the continuum a — 0

systematic extrapolation to t — 0 (hopefully) using data with smaller flow times
clear demonstration of the conservation of EMT

”O(t) improvement” might be useful

Gi, (1, x)G:,(t,x)
— Gi,(t,x)Gi,(t,X) — t [Ds D, G, (1, X) G2, (t, X) + GiL,(t, X)Ds D GE (1, X)]
this replacement removes O(t) terms in the tree level

@ also 1-loop improvement will not be impossible (presumably)
@ step size scaling for small ¢?

Hiroshi Suzuki (Kyushu University) Lattice energy-momentum tensor ... 2013/10/16 @ Osaka Univ. 37/39



Future direction: theoretical aspects

@ Inclusion of matter fields: flowed matter field requires the wave function
renormalization (Lischer (2013))

x(t,x) = Z7 Pxa(t,x),  x(t,x) = Z7 ' *%A(t, X)

To avoid the determination of Z, in lattice/continuum theory, we may define an
operator by normalizing it by the “condensation” as, for example,

%(t, X)Dx(t, x)
1572 ((to, X)x(to, X))

where £y is an arbitrary fixed flow time. This is a dim. 4 UV finite quantity to which
our argument is applied
@ 1-loop mixing coefficients (to be computed

L& 2
%ﬂi‘ﬁi%ﬂ@ﬂﬂi

@ Non-perturbative determination of mixing coefficients? (Del Debbio—Patella—Rago,
arXiv:1306.1173 [hep-th])
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Future direction:

@ Physical application? (thermodynamics, viscosities, conformal field theory, dilaton
physics, vacuum energy, ...)

@ For bulk thermodynamical quantities, for instance, for the so-called “trace anomaly”
(e—3p); = <_ {Tuutr (X)>T7

or for the entropy density
1
e +p)r = (~Tooda (0 + 3 Tk () .

our definition should coincide with the traditional one (Engels—Karsch—Scheideler,
(1982)) in the continuum limit

@ This is the case also for other off-diagonal components (Giusti—-Meyer (2013))?
@ Can we define the chiral current and/or SUSY current from the gradient flow?
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