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1.1.	
  What	
  we	
  can	
  do	
  with	
  TEBD/tDMRG	

Vidal,	
  PRL	
  (2003);	
  PRL	
  (2004)	
  /	
  White	
  and	
  Feiguin,	
  PRL	
  (2004)	


|Ψ(t)� = exp(−iĤt/�)|Ψ0�
One	
  can	
  exactly	
  compute	
  the	
  4me-­‐evolu4on	
  of	
  the	
  many-­‐body	
  wave	
  func4on	
  
in	
  a	
  1D	
  quantum	
  labce	
  system	
  (open	
  boundary	
  is	
  favored).	


Ĥ = J

�

j

σ̂z
j σ̂

z
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Eg.	
  Ising	
  model	
  with	
  
transverse	
  magne4c	
  field:	


2n	
  states	
  are	
  needed	
  to	
  span	
  the	
  en4re	
  Hilbert	
  space.	


We	
  need	
  an	
  efficient	
  way	
  to	
  describe	
  the	
  many-­‐body	
  wave	
  func4on	
  	
  
and	
  the	
  4me	
  propaga4on	
  operator.	
 Matrix	
  product	
  state	


Suzuki-­‐TroKer	
  decomposi1on	


A	
  system	
  of	
  n	
  spins	


An	
  arbitrary	
  state:	
|Ψ� =
1�

i1,i2,i3,...,in=0

ci1,i2,i3,...,in |i1, i2, i3, . . . , in�



1.2.	
  Matrix	
  product	
  state	
  (MPS)	
  representa1on	


Total	
  number	
  of	
  the	
  whole	
  	
  
elements	
  of	
  this	
  MPS	


2n dχ× ×:

In	
  general,	
  to	
  describe	
  an	
  arbitrary	
  state,	
  one	
  has	
  to	
  take	
χ ~ dn/2	


However,	
  for	
  the	
  ground	
  state	
  and	
  low-­‐lying	
  excited	
  states,	
  taking	
  a	
  finite	
  χ	
  
	
  gives	
  sufficiently	
  accurate	
  results.	


The	
  size	
  of	
  MPS	
  increases	
  only	
  linearly	
  with	
  n.	


An	
  arbitrary	
  state:	
|Ψ� =
1�

i1,i2,i3,...,in=0

ci1,i2,i3,...,in |i1, i2, i3, . . . , in�

Matrix	
  product	
  decomposi4on	
  	
  

ci1i2...in =
χ�

α1,α2,...,αn−1=1

Γ[1]i1
α1

λ[1]
α1

Γ[2]i2
α1α2

λ[2]
α2

Γ[3]i3
α2α3

λ[3]
α3

· · · λ[n−2]
αn−2

Γ[n−1]in−1
αn−2αn−1

λ[n−1]
αn−1

Γ[n]iL
αn−1

.

Γ: d×χ×χ-tensor, λ: χ-vector	
 λ2	
  is	
  the	
  eigenvalue	
  of	
  the	
  	
  
reduced	
  density	
  matrix.	
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Observa4on	
  ①:	

[ ] exp( ), 0l K Kαλ α− >:

For	
  the	
  ground	
  state,	


Observa4on	
  ②:	

[ ] ( ) exp( ( ) ), ( ) 0l t K t K tαλ α− >:

For	
  lowly-­‐excited	
  states,	


λ 

α 

Example:	
  the	
  ground	
  state	
  
of	
  the	
  Bose-­‐Hubbard	
  model	
  
with	
  U/J	
  =	
  100,	
  n=400,	
  	
  
N=200,	
  l	
  =	
  200.	


Taking	
  a	
  finite	
  χ	
  can	
  give	
  an	
  accurate	
  descrip4on	
  of	
  	
  
the	
  many-­‐body	
  wave	
  func4on.	


This	
  requirement	
  can	
  
be	
  held	
  only	
  in	
  1D	
  !!	




1.3.	
  Time	
  propaga1on	

|Ψ(t)� = exp(−iĤt/�)|Ψ0�

Nearest	
  neighbor	
  Hamiltonian:	
  

One-­‐site	
  operator:	
   Two-­‐site	
  operator:	
  K̂ [j]
1

Ĥ =
�

j

K̂
[j]
1 +

�
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K̂
[j,j+1]
2

K̂ [j,j+1]
2

Separate	
  the	
  Hamiltonian	
  into	
  the	
  “even”	
  part	
  and	
  “odd”	
  part	


Ĥ = Ĥeven + Ĥodd

Ĥodd ≡
�

odd j

Ĥ
[j] =

�

odd j

(K̂ [j]
1 + K̂

[j,j+1]
2 )

Ĥeven ≡
�

even j

Ĥ
[j] =

�

even j

(K̂ [j]
1 + K̂

[j,j+1]
2 )where	




�
�
exp(−iĤevenδ/2) exp(−iĤoddδ) exp(−iĤevenδ/2) +O(δ3)

�t/δ

Suzuki-­‐TroKer	
  decomposi1on:	


Now	
  the	
  4me	
  propaga4on	
  operator,	
  whose	
  dimension	
  was	
  originally	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  	
  
	
  is	
  decomposed	
  to	
  local	
  two-­‐site	
  operators	
  of	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	


dn × dn

d2 × d2

Opera1on	
  on	
  two	
  neighboring	
  sites:	


3 4

3 4
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2	
  order	
  Suzuki-­‐TroKer	
  decomposi1on	
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[j]
oddδ/2)

�

α1,··· ,αn−1

Γ[1]j1
α1

λ[1]
α1
Γ[2]j2
α1α2

λ[2]
α2
Γ[3]j3
α2α3

λ[3]
α3
Γ[4]j4
α2α3

· · ·Γ[n−1]jn−1
αn−2αn−1

λ[n−1]
αn−1

Γ[n]jn
αn−1

Furthermore,	


・・・	




Two	
  site	
  opera1on:	

c̃i1···ilil+1···in =

�

i�l,i
�
l+1

U
ilil+1
i�li

�
l+1

ci1···i�li�l+1···inIn	
  a	
  procedure	
  without	
  use	
  of	
  MPS,	
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In	
  the	
  MPS	
  descrip4on,	
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③	


Form	
  a	
  4-­‐rank	
  tensor:	


Apply	
  the	
  operator:	


Form	
  the	
  reduced	
  density	
  matrix:	
 ρ
[L]ilαl−1
i�lα

�
l−1

=
�

il+1αl+1

Θ̃ilil+1
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Singular	
  value	
  decomposi4on:	
④	
 ρ[L] → Γ̃[l], λ̃[l] ρ[R] → Γ̃[l+1]

Θ̃ilil+1
αl−1αl+1

=
χ×d�

αl=1

λ[l−1]
αl−1

Γ̃[l]il
αl−1αl

λ̃[l]
αl

Γ̃[l+1]il+1
αlαl+1

λ[l+1]
αl+1

⑤	
Trunca4on:	
χ× d→ χ Density	
  matrix	
  renormaliza1on!!	




Imaginary	
  4me	
  propaga4on：	


①	
  For	
  a	
  given	
  Hamiltonian,	
  calculate	
  the	
  ground	
  state.	
  

What	
  we	
  wanted	
  to	
  do:	


②	
  For	
  a	
  given	
  ini4al	
  state	
  and	
  a	
  given	
  Hamiltonian,	
  	
  
	
  	
  	
  	
  	
  	
  calculate	
  the	
  4me	
  evolu4on.	
  

|Ψg� = lim
τ→∞

exp(−Hτ)|Φprd�
|| exp(−Hτ)|Φprd�||

|Φprd� =
n�

l=1

|ψl�where	


|Ψ(t)� = exp(−iHt)|Ψg�

For	
  TEBD	
  extended	
  to	
  periodic	
  boundary	
  condi4on,	
  
see	
  Danshita	
  and	
  Naidon,	
  PRA	
  79,	
  043601	
  (2009)	
  

Note:	
  
This	
  is	
  not	
  the	
  most	
  
efficient	
  way	
  to	
  obtain	
  
the	
  ground	
  state.	
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BEC 

Laser 
beams 

	
  Interference	
  of	
  two	
  counter-­‐	
  
	
  propaga4ng	
  laser	
  beams	
  

A	
  periodic	
  poten4al	
  for	
  atoms	
  

	
  	
  	
  =	
  An	
  op4cal	
  labce	
  

A	
  BEC	
  in	
  a	
  1D	
  op4cal	
  labce	
  

A	
  simple	
  cubic	
  labce	
  

Laser	
  beams	


V (x) = V0 sin2 (kx)

Labce	
  spacing：d	
  =	
  π/k	
  ~	
  500nm	


2.1.	
  What	
  is	
  an	
  op1cal	
  la<ce	
  ?	


・	
  Controllability	
  

・	
  Cleanness	
  	


I.	
  Bloch	
  et	
  al.,	
  RMP	
  (2008)	




M.	
  P.	
  A.	
  Fisher	
  et	
  al.,	
  PRB	
  (1989)	
  
D.	
  Jaksch	
  et	
  al.,	
  PRL	
  (1998)	


Shallow	
  labce	
 Deep	
  labce	


When	
  the	
  filling	
  factor	
  ν	
  ≡	
  N/L	
  is	
  an	
  integer,	
  the	
  SF	
  to	
  MI	
  transi4on	
  occurs	
  	
  
	
  with	
  increasing	
  U/J	
  as	
  demonstrated	
  by	
  Greiner	
  et	
  al.,	
  Nature	
  (2002).	


	
  Momentum	
  	
  
	
  distribu4on	
  
	
  at	
  V0＝3ER	
  
	


	
  Momentum	
  	
  
	
  distribu4on	
  
	
  at	
  V0＝20	
  ER	
  

Hopping	
  energy	


U 

Onsite	
  interac4on	
  

J/ER ∝ exp(−C
√

s) U/ER ∝ ass
D/4

2.2.	
  Bose-­‐Hubbard	
  model	

Ĥ = −J

�

�j,l�

b̂
†
j b̂l +

U

2

�

j

n̂j(n̂j − 1)

	
  We	
  focus	
  on	
  the	
  SF	
  region	
  
	
  up	
  to	
  the	
  Mou	
  transi4on	
  
	
  in	
  one	
  dimension.	
  	




2.3.	
  1D	
  gases	
  produced	
  by	
  op1cal	
  la<ces	


BEC 

A	
  2D	
  array	
  of	
  1D	
  Bose	
  gases	
  	
  
	
  H.	
  Moritz	
  et	
  al.,	
  PRL	
  (2003)	
  	
  

�ω⊥ � µ, kBT

weaker	
  
	
  la<ce	
  

Advantages	
  of	
  one-­‐dimensional	
  systems:	


・	
  Stronger	
  quantum	
  fluctua4ons	


・	
  Reliable	
  analy4cal	
  and	
  numerical	
  methods	
  are	
  available	
  
	
  	
  	
  e.g.	
  Bosoniza4on	
  approach,	
  Bethe	
  ansatz,	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Density	
  matrix	
  renormaliza4on	
  group	
  (DMRG)	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Quantum	
  Monte	
  Carlo	
  (even	
  for	
  fermions)	
  



Quan4ta4ve	
  comparison	
  between	
  
TEBD	
  and	
  cold-­‐atom	
  experiment	
  
without	
  free	
  parameters	
  !!!	
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U/J = 2.44(2)

K/J = 1 × 10¬2

U/J = 5.16(7)

K/J = 1.7 × 10¬2

U/J = 3.60(4)

K/J = 1.3 × 10¬2

U/J = 9.9(1)

K/J = 2.9 × 10¬2
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Figure 2 | Relaxation of the local density for different interaction strengths.We plot the measured traces of the odd-site population nodd(t) for four
different interaction strengths U/J (circles). The solid lines are ensemble-averaged results from t-DMRG simulations without free parameters. The dashed

lines represent simulations including next-nearest neighbour hopping with a coupling matrix element JNNN/J�0.12 (a), 0.08 (b), 0.05 (c) and 0.03 (d)

calculated from the single-particle band structure.

lattices, which gives rise to a significant amount of longer-ranged
hopping. When including a next-nearest neighbour hopping term
−JNNN

�
j(â

†
j âj+2 + h.c.) in the t -DMRG simulations we obtain

quantitative agreement with the experimental data (dashed line
in Fig. 2). For larger values of U/J and correspondingly deeper
lattices, the tight-binding approximation is valid. For U/J ∼> 10
(Fig. 2d), larger deviations are found. We attribute these to residual
inter-chain tunnelling and non-adiabatic heating. Both of these
effects become more relevant for larger values of U/J , because we
adjust this ratiomainly by tuning the tunnel coupling J .

The results of the density measurements can be related to the
expectations for an infinite chain with K = 0. There, the time
evolution can be calculated analytically in the case of either non-
interacting bosons (U/J = 0) or infinite interactions (U/J → ∞;
refs 17,18). These limiting cases can be understood well through
the mechanism of local relaxation by ballistically propagating
excitations. The on-site densities follow zeroth order Bessel
functions describing oscillations that are asymptotically dampened
by a power law with exponent −0.5. The damping we observe in
the interacting system, however, is much faster. As we will show
below, the dynamics is approximated well by a power law with an
exponent<−0.5 for the first tunnel oscillations. This behaviour has
also been found in t -DMRG simulations of homogeneous Hubbard
chains with finite interactions17,18. The exact origin of this enhanced
relaxation in the presence of strong correlations constitutes one of
themajor open problems posed by the results presented here.

Measurements of quasi-local currents
Employing the bichromatic superlattice, we were also able to detect
themagnitude and direction of quasi-local density currents. Instead
of raising the short lattice at the end of step (2), we ramped up the

long lattice to suppress the tunnel coupling through every second
potential barrier in the chain (Fig. 3a). At the same time, we set
the short lattice to a fixed value to obtain always the same value of
(U/J )DW � 0.2 in the emerging double wells. By tuning the relative
phase between the long and short lattice we were able to selectively
couple sites with index (2j,2j + 1) (‘even–odd’, j integer) or
(2j−1,2j) (‘odd–even’).We recorded the time evolution in the now
isolated double wells using the same final read-out scheme as for the
densities (see Fig. 3b). We find sinusoidal tunnel oscillations which
dephase only slowly and decrease in amplitude with increasing
relaxation time t . The phase φ and amplitude A of these oscillations
were extracted from a fit of a sine wave to the data and are plotted
in Fig. 3c as a function of the relaxation time for U/J = 5.16(7).
The phase contains the information about the direction of the mass
flow, whilst the amplitude is a combination of the local population
imbalance and the strength of the local current.

We find φ to evolve linearly in time, giving strong evidence that
the excitations in the system expand approximately ballistically,
as suggested in refs 17,18. Furthermore, its value does not change
when coupling even–odd or odd–even sites, indicating the absence
of centre-of-mass motion in the system. The amplitude A, on
the other hand, decays to zero on the same timescale as the
oscillations in the local densities dampen out—in fact the quantities
(1 ± A)/2 provide envelopes to the traces nodd and neven (see
Supplementary Information). On short timescales, 0< 4Jt/h< 3,
we find the decay of the amplitude—and therefore also that of
the density oscillations—to follow an approximate power law∝t−α

with α =0.86(7). This behaviourmight change for longer evolution
times, where no significant amplitude was measurable. We extract
the power-law coefficients α for a wide range of U/J (right inset to
Fig. 3c). In all cases, the absolute values of the coefficients are larger
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Figure 3 |Quasi-local current measurement. a, To measure the quasi-local

density flow every second tunnel coupling was suppressed, coupling either

odd–even or even–odd pairs. b, Oscillations of the odd-site population in

the double wells with fitted sine waves for t= 100 µs (solid), 200 µs

(dashed) and 400 µs (dotted). The value of U/J during the relaxation was
5.16(7). c, Extracted amplitude A and phase φ of the double-well

oscillations for odd–even (filled circles) and even–odd (open circles)

couplings. The solid lines show the respective results of the t-DMRG

simulations. The dashed lines are fits to a linear increase in the phase and a

power-law decay of the amplitude. The insets show the amplitude in a

log–log plot (left) and the extracted power-law coefficients (right). The

horizontal grey line indicates the power-law coefficient α =0.5 for free and

hardcore bosons.

than that expected for free particles (α = 0.5), again indicating the
faster relaxation in the presence of interactions.

It is key to the experiment that the observed fast damping cannot
be attributed to mere classical ensemble averaging due to the inho-
mogeneous distribution of tunnel couplings in the various chains
(var(J )/J �0.4%) or the external trap. Furthermore, we ensure that
the transverse tunnel coupling between adjacent chains J⊥ is always
one to two orders of magnitude smaller than J . Furthermore, the
dynamics of a single site—or of the densities of odd sites—cannot
be described in terms of simple rate equations, nor even in terms of
Markovian quantum master equations reflecting damped motion
(see Supplementary Information). Similarly, no dynamical mean-
field description can capture the dynamics for large U (ref. 21).
Hence, any realistic description has to necessarily include themany-
body and non-Markovian features of the dynamics, contributing to
the challenge for a numerical simulation for intermediate times.

Time evolution of the quasi-momentumdistribution
A different view on the relaxation can be obtained from the quasi-
momentum distribution of the ensemble. When instantaneously
switching off all trapping potentials after a relaxation time t and
letting the cloud expand freely for a time-of-flight tToF, the density
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Figure 4 | Build-up of short-ranged correlations. a, Plot of the integrated
density profiles obtained after time-of-flight (ToF) versus 4Jt/h for
U/J= 5.16(7) as obtained in the experiment (left) and reconstructed from

numerical t-DMRG simulations (right). The images show the crossover

from a purely Gaussian distribution (t=0) to a more complex

quasi-momentum distribution (0<4Jt/h< 2) to a purely sinusoidal

pattern (4Jt/h> 2). b, Visibility of the interference patterns versus 4Jt/h
obtained experimentally (circles) and from the simulations (solid curve).

The grey line represents the measured visibility at 4Jt/h� 5, whilst the

dashed line corresponds to the value obtained from the simulation of a

homogeneous system
18
. c, Steady-state value of the visibility measured at

4Jt/h� 5. The blue solid line is the ensemble-averaged result of a

finite-temperature perturbation theory calculation without free parameters.

distribution takes the form nToF(r)∝ |�w0(mr/h̄t )|2S(mr/h̄t ). Here,
w̃0(k) is the Fourier transform of the on-site Wannier orbital and
the interference term for the ensemble of decoupled Hubbard
chains in the far-field limit is S(k) = E{N }

�
j,j � e

ikx (j−j �)d�â†
j âj � �,

with d = λxs/2 being the lattice spacing along the chain direction.
In Fig. 4a, we plot the measured density profiles integrated over
the y- and z-direction as a function of the relaxation time (left
panel) togetherwith the corresponding patterns reconstructed from
t -DMRG simulations for the full distribution of chains (right
panel) for U/J � 5. Both the experimental data and the numerical
calculation show a rapid build-up of short-range coherence, not
present in the initial state.

At short relaxation times 4Jt/h ∼< 2, the simulation data
shows a strong cosinusoidal component, with a period of
2h̄k = 2htToF/(mλxs), and weaker contributions from higher
harmonics. Whereas the former correspond to next-neighbour
coherences in the system, the latter are a signature of
correspondingly longer range coherences which rapidly decay in
the relaxation process18. Owing to the noise on the experimental
data, the higher frequency components are weak, but can
still be identified. For longer relaxation times 4Jt/h ∼> 2, only
the next-neighbour coherences remain, as also found from
t -DMRG simulations of homogeneous Hubbard chains with finite
interactions18. We extract the visibility of the lowest-frequency
component, as described in ref. 14, both from the experimental data
and the t -DMRG calculations (Fig. 4b), finding good agreement
between experiment and numerics. The visibility builds up towards
a first maximum at 4Jt/h � 0.5, corresponding to the first
maximum in nodd(t ) (Fig. 2c), followed by dampened oscillations.
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Figure 1 | Relaxation of the density pattern. a, Concept of the experiment: after having prepared the density wave |ψ(t=0)� (1), the lattice depth was
rapidly reduced to enable tunnelling (2). Finally, the properties of the evolved state were read out after all tunnelling was again suppressed (3). b, Even–odd
resolved detection: particles on sites with odd index were brought to a higher Bloch band. A subsequent band-mapping sequence was used to reveal the
odd- and even-site populations13,14. c, Integrated band-mapping profiles versus relaxation time t for h/(4J)�0.9ms, U/J= 5.16(7) and K/J� 1.7× 10−2.
d, Odd-site density extracted from the raw data shown in c. The shaded area marks the envelope for free bosons (light grey) and including inhomogeneities
of the Hubbard parameters in the experimental system (dark grey stripe near border).

retro-reflected laser beams of wavelength λxl = 1,530 nm along

one direction (‘long lattice’) and λy,z = 844 nm along the other

two. In this loading we crossed the transition to a Mott insulator,

which resulted in an occupation of not more than one particle per

site. Finally, we added to the long lattice another optical lattice

with wavelength λxs = 765 nm = λxl/2 (‘short lattice’) with the

relative phase between the two adjusted to load every second site

of the short lattice
14,20

, hereafter called the ‘even sites’. Completely

removing the long lattice gave an array of practically isolated

one-dimensional density waves |ψN � = | ...,1,0,1,0,1,...�—thus

realizing step (1)—with a distribution of particle numbers N and,

thus, lengths L = 2N − 1 given by the external confinement. All

our experiments were carried out with equivalent ensembles of

such disconnected Hubbard chains. For our system parameters,

we expect chains with a maximal particle number of Nmax � 43

and a mean value of N̄ � 31 (see Methods for details on

the loading procedure).

To initialize the many-body relaxation dynamics of step (2),

we quenched the short-lattice depth to a small value within

200 µs, allowing the atoms to tunnel along the x-direction. After
a time t , we rapidly ramped up the short lattice to its original

depth, thus suppressing all tunnelling. Finally, we read out the

properties of the evolved state in terms of densities, currents and

coherences in step (3). Note that in the experiments we always

measured the full ensemble average X(t ) = E{N }�ψN (t )|X̂ |ψN (t )�
of an observable X̂ over the array of chains (denoted by the

averaging operator E{N }), rather than the expectation value for a

single chain withN particles.

Relaxation of quasi-local densities
We first discuss measurements of the density on sites with either

even or odd index. After the time evolution, we transferred the

population on odd sites to a higher Bloch band using the superlat-

tice and detected these excitations by employing a band-mapping

technique (Fig. 1b; refs 13,14). Figure 1c shows the integrated

band-mapping profiles as a function of relaxation time for

h/(4J )� 0.9ms, U/J = 5.16(7) and K/J � 1.7×10
−2
. We plot the

resulting traces nodd(t ) in Fig. 1d. We generally observe oscillations

in nodd with a period T � h/(4J ), which rapidly dampen out

within 3–4 periods to a steady value of �0.5. The same qualitative

behaviour is found in awide range of interactions (Fig. 2).

We performed t -DMRG calculations, keeping up to 5,000

states in the matrix-product state simulations (solid lines in

Fig. 2). The Bose–Hubbard parameters used in these simulations

were obtained from the respective set of experimental control

parameters. Furthermore, we took into account the geometry of

the experimental set-up by performing the corresponding ensemble

average E{N } over chains with different particle numbers N (see

Methods). For the times accessible in the simulations, these averages

differ only slightly from the traces obtained for a single chain with

the maximum particle number Nmax = 43 of the ensemble (see

Supplementary Information). For interaction strengths U/J ∼< 6

(Fig. 2a–c), we find a good agreement of the experimental data and

the simulations. In this regime, only small systematic deviations

can be observed, which are strongest for the smallest value of U/J ,
corresponding to the smallest lattice depth. They can be attributed

to the breakdown of the tight-binding approximation for shallow
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2.4.	
  TEBD	
  versus	
  experiments	




2.5.	
  Applica1ons	
  of	
  TEBD/tDMRG	

・	
  Dynamic	
  correla4on	
  func4ons	


stead is a particular linear combination of spin and charge
!we will call this light mode “spinonlike”". In the limits of
nearly complete polarization or either zero or complete fill-
ing, the ↑’s become just regular fermions carrying the full
charge and spin. This scenario has been confirmed numeri-
cally in Refs. 10, 23, and 24 by looking at the real-time
evolution of spin and charge distributions.

At large negative U the 2’s do not move freely past the
0’s; this exchange happens via a virtual intermediate un-
paired state with energy #U#, resulting in effective hopping
teff=−2t2 /U. Thus this motion of 2’s relative to 0’s consti-
tutes the heavy “holonlike” mode of the Luttinger liquid with
a smaller bandwidth. Also, when a 2 moves past an ↑, the
ground state has a sign change. This means the wave func-
tion of the quasicondensate of bosonic 2’s has a node at each
↑. If these nodes were equally spaced, this would be an
FFLO standing-wave condensate with momentum !Q.
However, the ↑’s actually form a 1D Luttinger liquid with
divergent position fluctuations so the momentum distribution
of the pairs instead has a power-law divergence at !Q; this
1D partially spin-polarized superfluid state should perhaps be
termed “quasi-FFLO.”

Hamiltonian !1" can be solved exactly by means of the
Bethe ansatz,25–27 and the dispersion of the elementary exci-
tations can be obtained.28–30 However, the actual Green’s
functions and spectral properties can only be calculated in
certain limits,31 and numerical methods have been crucial to
fill in the blanks and compare to experiments.32,33 In the
following, we use the time-dependent extension of the
density-matrix renormalization-group !tDMRG" !Refs. 34
and 35" method to obtain estimates for various Green’s func-
tions in real time and real space with unprecedented
accuracy.36 To extract the dynamical response of the system,
we calculate the correlators G!x−x! , t!− t"
= i$O!x! , t!"O†!x , t"%, where O is an operator of interest. The
Fourier transforming then yields the corresponding spectral
weights as functions of momentum and frequency:34,36,37

I!k,"" = &
n

#$#n#Ok##0%#2$!" − En + E0" , !2"

where E0 is the ground-state energy and the sum runs over
all the eigenstates of the system with energy En. All the
results will be plotted using a logarithmic scale for the inten-
sity, with several orders of magnitude between the intensities
of the weakest and strongest features. At very small scales,
some ripples or oscillations appear as a consequence of the
numerical Fourier transform and the commensuration of the
lattice. These effects get amplified near zero momentum and
frequency.

In Figs. 1!a" and 1!b" we show the dynamic structure
factor for the charge and spin densities, respectively, for an
unpolarized Hubbard chain at quarter filling !in this paper we
always use L=80 and U=−8t". The charge excitations dis-
play gapless modes at momenta k=0 and k= !2kF= !% /2
and a continuum ranging from "=0 to "' t=4teff. This
spectrum is formed primarily by holon-antiholon excitations.
It is qualitatively similar to the particle-hole spectrum of the
corresponding noninteracting system but with a reduced
bandwidth. However, this system is a superfluid with a spin

gap of '5t, as is seen in the spectral weight of the spin (Fig.
1!b"); this is the energy “cost” of breaking a Cooper pair. The
spinon has bandwidth '4t, and the spectral weight of Sz
vanishes strongly as k→0 since the total spin is conserved
and the matrix element for making spin excitations thus van-
ishes at zero momentum.

The single-particle spectral weight for the quarter-filled
unpolarized system is shown in Fig. 1!c", where we plot the
imaginary part of the one-particle Green’s function. The up-
per and lower features, for positive and negative frequencies,
correspond to the inverse photoemission spectra !IPES" and
photoemission spectra !PES", resulting from adding or re-
moving a fermion, respectively. We have shifted the energies
relative to the chemical potential &= (E0!N+1"−E0!N
−1") /2, which lies in the center of the spin gap. This gap is
due to the Cooper pairing: the ground state is a total spin
singlet with all fermions paired. The added fermion has no
“partner” to pair with, while removing a fermion requires
breaking an existing pair; so both processes are gapped.

Again, we can heuristically understand many features of
these spectra using the large-negative-U description dis-
cussed above. The unpolarized ground state is a quasicon-
densate of 2’s that form a Luttinger liquid of repulsively
interacting bosons. An added ↑ forms a spinon and much of
its spectral weight thus follows a spinon dispersion with
bandwidth 4t. Since the wave function changes sign when
the ↑ exchanges position with a 2, the lowest-energy spinon
states are at the momenta !% /4 set by the density of the 2’s.
However, the added fermion may also excite holon modes,
and a careful look at the upper part of Fig. 1!c" reveals a
continuum, with a weaker feature at the lower edge of the
continuum which has a holonlike dispersion. This continuum
arises when part of the added momentum is used to excite
holon modes of the quasicondensate.

Removing a fermion requires breaking a pair !a 2", and
this process apparently couples more strongly to the holon

FIG. 1. !Color online" Dynamical structure factors of the !a"
“charge” density n!k ,"" and !b" spin Sz!k ,"" for an unpolarized
quarter-filled Hubbard chain with U=−8t. !c" Spectral weights for
adding !"'&" or removing !"(&" a fermion for the same system;
& is the chemical potential. Frequencies are in units of the hopping
t=1. The colors are set by the logarithm of the spectral intensity.
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stead is a particular linear combination of spin and charge
!we will call this light mode “spinonlike”". In the limits of
nearly complete polarization or either zero or complete fill-
ing, the ↑’s become just regular fermions carrying the full
charge and spin. This scenario has been confirmed numeri-
cally in Refs. 10, 23, and 24 by looking at the real-time
evolution of spin and charge distributions.

At large negative U the 2’s do not move freely past the
0’s; this exchange happens via a virtual intermediate un-
paired state with energy #U#, resulting in effective hopping
teff=−2t2 /U. Thus this motion of 2’s relative to 0’s consti-
tutes the heavy “holonlike” mode of the Luttinger liquid with
a smaller bandwidth. Also, when a 2 moves past an ↑, the
ground state has a sign change. This means the wave func-
tion of the quasicondensate of bosonic 2’s has a node at each
↑. If these nodes were equally spaced, this would be an
FFLO standing-wave condensate with momentum !Q.
However, the ↑’s actually form a 1D Luttinger liquid with
divergent position fluctuations so the momentum distribution
of the pairs instead has a power-law divergence at !Q; this
1D partially spin-polarized superfluid state should perhaps be
termed “quasi-FFLO.”

Hamiltonian !1" can be solved exactly by means of the
Bethe ansatz,25–27 and the dispersion of the elementary exci-
tations can be obtained.28–30 However, the actual Green’s
functions and spectral properties can only be calculated in
certain limits,31 and numerical methods have been crucial to
fill in the blanks and compare to experiments.32,33 In the
following, we use the time-dependent extension of the
density-matrix renormalization-group !tDMRG" !Refs. 34
and 35" method to obtain estimates for various Green’s func-
tions in real time and real space with unprecedented
accuracy.36 To extract the dynamical response of the system,
we calculate the correlators G!x−x! , t!− t"
= i$O!x! , t!"O†!x , t"%, where O is an operator of interest. The
Fourier transforming then yields the corresponding spectral
weights as functions of momentum and frequency:34,36,37

I!k,"" = &
n

#$#n#Ok##0%#2$!" − En + E0" , !2"

where E0 is the ground-state energy and the sum runs over
all the eigenstates of the system with energy En. All the
results will be plotted using a logarithmic scale for the inten-
sity, with several orders of magnitude between the intensities
of the weakest and strongest features. At very small scales,
some ripples or oscillations appear as a consequence of the
numerical Fourier transform and the commensuration of the
lattice. These effects get amplified near zero momentum and
frequency.

In Figs. 1!a" and 1!b" we show the dynamic structure
factor for the charge and spin densities, respectively, for an
unpolarized Hubbard chain at quarter filling !in this paper we
always use L=80 and U=−8t". The charge excitations dis-
play gapless modes at momenta k=0 and k= !2kF= !% /2
and a continuum ranging from "=0 to "' t=4teff. This
spectrum is formed primarily by holon-antiholon excitations.
It is qualitatively similar to the particle-hole spectrum of the
corresponding noninteracting system but with a reduced
bandwidth. However, this system is a superfluid with a spin

gap of '5t, as is seen in the spectral weight of the spin (Fig.
1!b"); this is the energy “cost” of breaking a Cooper pair. The
spinon has bandwidth '4t, and the spectral weight of Sz
vanishes strongly as k→0 since the total spin is conserved
and the matrix element for making spin excitations thus van-
ishes at zero momentum.

The single-particle spectral weight for the quarter-filled
unpolarized system is shown in Fig. 1!c", where we plot the
imaginary part of the one-particle Green’s function. The up-
per and lower features, for positive and negative frequencies,
correspond to the inverse photoemission spectra !IPES" and
photoemission spectra !PES", resulting from adding or re-
moving a fermion, respectively. We have shifted the energies
relative to the chemical potential &= (E0!N+1"−E0!N
−1") /2, which lies in the center of the spin gap. This gap is
due to the Cooper pairing: the ground state is a total spin
singlet with all fermions paired. The added fermion has no
“partner” to pair with, while removing a fermion requires
breaking an existing pair; so both processes are gapped.

Again, we can heuristically understand many features of
these spectra using the large-negative-U description dis-
cussed above. The unpolarized ground state is a quasicon-
densate of 2’s that form a Luttinger liquid of repulsively
interacting bosons. An added ↑ forms a spinon and much of
its spectral weight thus follows a spinon dispersion with
bandwidth 4t. Since the wave function changes sign when
the ↑ exchanges position with a 2, the lowest-energy spinon
states are at the momenta !% /4 set by the density of the 2’s.
However, the added fermion may also excite holon modes,
and a careful look at the upper part of Fig. 1!c" reveals a
continuum, with a weaker feature at the lower edge of the
continuum which has a holonlike dispersion. This continuum
arises when part of the added momentum is used to excite
holon modes of the quasicondensate.

Removing a fermion requires breaking a pair !a 2", and
this process apparently couples more strongly to the holon

FIG. 1. !Color online" Dynamical structure factors of the !a"
“charge” density n!k ,"" and !b" spin Sz!k ,"" for an unpolarized
quarter-filled Hubbard chain with U=−8t. !c" Spectral weights for
adding !"'&" or removing !"(&" a fermion for the same system;
& is the chemical potential. Frequencies are in units of the hopping
t=1. The colors are set by the logarithm of the spectral intensity.
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  (MQT)	
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2.7.	
  Tradi1onal	
  method:	
  Instanton	
  technique	
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Pros	
  of	
  TEBD/tDMRG	
  over	
  instanton	


・	
  Accessible	
  to	
  the	
  region	
  far	
  away	
  from	
  the	
  semi-­‐classical	
  limit	


・	
  Any	
  observables	
  can	
  be	
  calculated	
  during	
  real-­‐4me	
  evolu4on	


Cons	


・	
  Difficult	
  to	
  access	
  the	
  strictly	
  semiclassical	
  limit	


・	
  Restricted	
  to	
  1D	
  systems	


・	
  More	
  accurate	




2.8.	
  Purposes	
  of	
  this	
  work	

We	
  study	
  the	
  quantum	
  nuclea4on	
  of	
  phase	
  slips	
  
of	
  the	
  1D	
  Bose-­‐Hubbard	
  model	
  in	
  order	
  to	
  
present	
  the	
  first	
  applica4on	
  of	
  TEBD	
  to	
  
macroscopic	
  quantum	
  tunneling.	
  

U:	
  onsite	
  interac4on,	
  J:	
  hopping	
  
:	
  atom	
  number	
  per	
  site	
  (filling	
  factor)	
  

Advantages	
  of	
  this	
  system:	
  

2.	
  The	
  effec4ve	
  Planck’s	
  constant	
  is	
  well	
  defined	
  and	
  	
  
	
  	
  	
  	
  	
  can	
  be	
  tuned	
  by	
  the	
  Bose-­‐Hubbard	
  parameters	
  !!!	
  

1.	
  Nuclea4on	
  rate	
  can	
  be	
  calculated	
  by	
  the	
  instanton	
  method	
  
	
  	
  	
  	
  in	
  the	
  quantum	
  rotor	
  regime	
  (ν>>1)	


3.	
  Relevant	
  to	
  experiments	
  of	
  ultracold	
  atomic	
  gases	


Note:	
  Quantum	
  nuclea4on	
  of	
  phase	
  slips	
  are	
  originally	
  suggested	
  in	
  the	
  context	
  of	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  superconduc4ng	
  nanowires	
  to	
  explain	
  supercurrent	
  decay.	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  See,	
  e.g.,	
  K.	
  Yu.	
  Arutyunov	
  et	
  al.,	
  Phys.	
  Rep.	
  (2008)	
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3.1.	
  Overview	
  of	
  coherent	
  phase	
  slips	


Bose-­‐Hubbard	
  model	
  	
  
with	
  a	
  phase	
  twist:	


The	
  (quasi-­‐)momentum	
  is	
  discre4zed:	
  p=2π	
  n/L	


J : hopping energy,	
  U : onsite interaction,	
  
L : number of lattice sites, 	
  

: phase twist	
  
N : total number of particles	
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  number	
  n=0	
  and	
  n=1.	
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3.2.	
  How	
  to	
  simulate	
  the	
  supercurrent	
  dynamics	


①	
  Imaginary	
  4me	
  	
  
	
  	
  	
  	
  	
  evolu4on	
  for	
  	
  

We	
  obtain	
  a	
  state	
  with	
  n=1,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  
	
  where	
  n	
  is	
  the	
  winding	
  number.	
  	
  

②	
  Sebng	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  

	
  we	
  calculate	
  
	
  

and	
  necessary	
  observables.	
  

|Φn=1�

e−iHt|Φn=1�
θ = θ1 = π/L



3.3.	
  Time	
  evolu1on	
  of	
  the	
  flow	
  velocity	


	
  	
  	
  	
  	
  	
  	
  and	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
are	
  degenerate.	
  

U/J=2.5,	
  (L=16,	
  N=16)	
  

Coherent	
  oscilla4on	
  between	
  the	
  velocity	
  v(t=0)	
  and	
  0	
  !	
  

Flow	
  velocity:	
  v =
Jd

i�N
�

j

�b̂†j b̂j+1 − h.c.�

d:	
  labce	
  spacing	




3.4.	
  Overlaps	
  and	
  momentum	
  occupa1ons	


where	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  the	
  ground	
  state	
  of	
  
	
  
	
  H	
  for	
  the	
  phase	
  twist	
  	
  

Overlap:	
  

	
  n=1	
  
	
  	
  	
  =0	
  
	
  	
  	
  =-­‐1	
  

The	
  wave	
  func4on	
  is	
  approximately	
  	
  
described	
  by	
  a	
  cat	
  state,	
  

:	
  period	
  of	
  the	
  oscilla4on	
  T	
  

The	
  coherent	
  oscilla4on	
  is	
  due	
  to	
  MQT!	
  

∆ =
2π�
T

Energy	
  splibng:	


|Φn�

θ = 2πn/L

wn(t) = |�Φn|Ψ(t)�|2



For	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  as	
  he	
  decreases	
  the	
  error	
  also	
  decreases	
  such	
  that	
  
it	
  is	
  within	
  10%	
  when	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .	
  	
  	
  

The	
  error	
  for	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  is	
  significantly	
  larger	
  and	
  does	
  not	
  depend	
  even	
  
monotonically	
  on	
  he.	
  This	
  means	
  that	
  at	
  this	
  filling	
  the	
  mapping	
  to	
  the	
  
quantum	
  rotor	
  model	
  is	
  invalid.	
  

L	
  =	
  8	
  
Instanton	
  energy	
  splibng	
  for	
  ν>>1:	


3.5.	
  Comparison	
  between	
  instanton	
  and	
  TEBD	


For	
  L=8,	
 s̃I = 7.363, A = 3.06

∆Ins

EJ
= 2LA

�
s̃I

2πhe
exp

�
− s̃I
he

�

where	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
EJ =
√
νJUν = N/L



ence of a finite onsite interaction !see Fig. 15"b#$, the degen-
eracy is broken and the emergence of the energy splitting is
characterized as an avoided crossing of the two lowest-lying
energy levels. Thus, the origin of the tunneling coupling be-
tween the two current states is the Umklapp-scattering pro-
cess caused by the onsite interaction, which is a characteris-
tic of a lattice system.

APPENDIX B: TEBD FOR LARGE FILLING FACTORS

In this appendix, we present an idea of adopting the
TEBD method to the Bose-Hubbard model when the average
number of particles per site ! "or the filling factor# is large.
The key of the idea is that in addition to the upper bound, the
lower bound for the occupation number of particle per site is
introduced in order to significantly reduce the size of the
local Hilbert space. This idea is crucial because the quanti-
tative comparison of the TEBD results with the results of the
instanton method based on the quantum rotor model is pos-
sible only for very large !"1000 "see Sec. IV#.

Let us consider a system described by the 1D Bose-
Hubbard model, Eq. "1# with L lattice sites. Spanning the
Hilbert space of the whole system by a product of local Hi-
bert spaces of dimension d, a many-body wave function of
the system is expressed as

%#& = '
j1,j2,. . .,jL=1

d

cj1,j2,. . .,jL
%j1&%j2& ¯ %jL& . "B1#

In the TEBD algorithm,22 coefficients cj1,j2,. . .,jL
are decom-

posed in a particular matrix product form as

cj1,j2,. . .,jL
= '

$1,. . .,$L−1=1

%

&$1

!1$j1'$1

!1$&$1$2

!2$j2'$2

!2$ ¯ '$L−2

!L−2$&$L−2$L−1

!L−1$jL−1

('$L−1

!L−1$&$L−1

!L$jL. "B2#

The vector '$l

!l$ represents the coefficients of the Schmidt de-
composition of %#& with respect to the bipartite splitting of
the system into !1, . . . , l−1, l$ : !l+1, l+2, . . . ,L$. The tensors
&’s constitute the Schmidt vectors together with the ' vec-
tors. % is the number of basis states, which is taken to be
sufficiently large so that the error due to this truncation is
nearly equal to zero. In our typical calculations, it ranges
from %=100 to %=250.

Usually dimension of the local Hilbert space correspond-
ing to a single site is chosen as d=nmax+1, where nmax is the
maximum number of particles per site. It is spanned by the
basis set, (%n=0& , %1& , . . . , %nmax−1& , %nmax&). While, in prin-
ciple, nmax is equal to the total number of particles in the
system, taking much smaller nmax provides converged results
in practice. For instance, for accurate determination of the
zero-temperature phase diagram of the Bose-Hubbard model
at unit filling, nmax=5 "d=6# is sufficient.41 At large filling
factors, however, this choice of the local Hilbert space basis
makes computations extremely expensive, because the com-
putational cost in TEBD scales as Ld3%3. To solve this prob-
lem, in addition to nmax, we introduce the minimum number
of particles per site nmin and span the local Hilbert space by
the basis set, (%n=nmin& , %nmin+1& , . . . , %nmax−1& , %nmax&), and
thus d=nmax−nmin+1. In the parameter region of
U / "!J#*1, where our TEBD simulations are carried out,
setting nmax=!+5 and nmin=!−5 corresponding to d=11 is
sufficient for the convergence regardless of the value of !. To

FIG. 15. "Color online# Twelve lowest energy levels with zero total quasimomentum of the Bose-Hubbard model with L=8 and !=1 as
a function of )L. The two plots correspond to "a# U=0 and "b# U=2J. "I# and "II# are magnifications of the regions indicated in "b#.

FIG. 16. "Color online# Occupation probabili-
ties P"n# "in the log-scale# of the local Fock state
%n& in the ground state of the untwisted Bose-
Hubbard model with "a# !=10 and "b# 1000,
where L=8, and U / "!J#=0.5 "red circles# and 1.0
"black squares#. Here L is the system size, ! is the
filling factor, U is the onsite interaction and J is
the hopping energy.
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demonstrate this, in Fig. 16, we plot the occupation prob-
abilities P!n" of the local Fock state #n$ in the ground state of
the Bose-Hubbard model with the filling factor !a" !=10 and
!b" !=1000. Here we set L=8, "=0, and U / !!J"=0.5
!red circles" and 1.0 !black squares". It is evident that P!n"
exponentially decays as n deviates from its average ! and
that P!n" for n#!+5 and n$!−5 is less than 10−6.
In addition, we present convergence tests for real-time dy-

namics with respect to d in Fig. 17, where the overlaps
#%%1 #&$#2 for several values of d are plotted !see Sec. III for
the definition of the overlap". Clearly, the results for d=11
are very well-converged. Thus, this truncation scheme of the
local Hilbert space is justified both for the ground state and
the real-time propagation. Note that when U / !!J"$0.5,
we take d=13 !nmax=!+6 and nmin=!−6" for better
convergence.
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②	
  Sebng	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
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  calculate	
  
	
  

and	
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Fitting function:	


f(t) = A exp(−Γt)

P (t) = |�Ψ(t)|Ψ(t = 0)�|2
Persistence probability:	


Flow	
  velocity:	
  

4.3.	
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  nuclea1on	
  rate	
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FIG. 6. (Color online) The red solid line represents the time
evolution of the flow velocity v(t) in the dynamics of the 1D BHM,
where L = 160, ν = 1, U/J = 3, and n = 4. The blue dashed line
represents the flow velocity at the winding number n = 3.

in our previous work that TEBD is applicable to the problem
of superflow dynamics associated with quantum phase slips
[39]. We first calculate the ground state of Eq. (33) with the
phase twist θ = 2πn/L via the imaginary time evolution, and
thereby a flowing state with the winding number n that is
metastable in the classical limit is prepared. Taking this state
as the initial state and setting θ = 0 at t = 0, we compute the
real-time evolution.

In Fig. 6, we show the time evolution of the averaged flow
velocity,

v = Jd

ih̄N

∑

j

〈b̂†j b̂j+1 − H.c.〉, (34)

for L = 160, U/J = 3, and n = 4. We see that the flow
velocity decreases in time, clearly exhibiting the superflow
decay due to quantum tunneling. However, the averaged
flow velocity does not exhibit a sudden drop by a quantized
amount, which could be a characteristic of phase slips but

FIG. 7. (Color online) The red solid line represents the time
evolution of the persistence probability P (t) in the dynamics of the 1D
BHM, where L = 160, ν = 1, U/J = 3, and n = 4. The longitudinal
axis is shown in a logarithmic scale. In the region sandwiched between
the two green dotted lines, P (t) decays exponentially. The blue dashed
line represents the best fit with a function of Eq. (35) to the data in
the exponentially decaying region.

         

         

FIG. 8. (Color online) The red circles represent the nucleation
rates of quantum phase slips $ extracted from the real-time dynamics
of the 1D Bose-Hubbard model with L = 160 as functions of the
flow (quasi-)momentum p, where U/J = 2.8 (a), 3 (b), and 3.2 (c).
The plots are shown in a log-log scale. In each plot, the blue solid
line represents the scaling formula of Eq. (31) with the constant C$

determined such that the line passes on the data point with the smallest
momentum. The TL parameters are taken from Ref. [61] as K = 2.52
(a), 2.37 (b), and 2.17 (c).

gradually decreases in time. This is because the phase slip
jump is smoothed out by taking the quantum average of many
events. In each event a phase slip occurs at a different time.
Notice that the flow velocity is constant in time if one computes
classical dynamics of the Gross-Pitaevskii equation neglecting
quantum fluctuations.

To quantify the tunneling rate from the metastable state,
i.e., the nucleation rate of quantum phase slips, we calculate
the overlap of the wave function with the initial state P (t) =

023638-8

U/J = 3
L = N = 160

n = 4 (pd = π/20)

IPPEI DANSHITA AND ANATOLI POLKOVNIKOV PHYSICAL REVIEW A 85, 023638 (2012)

FIG. 6. (Color online) The red solid line represents the time
evolution of the flow velocity v(t) in the dynamics of the 1D BHM,
where L = 160, ν = 1, U/J = 3, and n = 4. The blue dashed line
represents the flow velocity at the winding number n = 3.

in our previous work that TEBD is applicable to the problem
of superflow dynamics associated with quantum phase slips
[39]. We first calculate the ground state of Eq. (33) with the
phase twist θ = 2πn/L via the imaginary time evolution, and
thereby a flowing state with the winding number n that is
metastable in the classical limit is prepared. Taking this state
as the initial state and setting θ = 0 at t = 0, we compute the
real-time evolution.

In Fig. 6, we show the time evolution of the averaged flow
velocity,

v = Jd

ih̄N

∑

j

〈b̂†j b̂j+1 − H.c.〉, (34)

for L = 160, U/J = 3, and n = 4. We see that the flow
velocity decreases in time, clearly exhibiting the superflow
decay due to quantum tunneling. However, the averaged
flow velocity does not exhibit a sudden drop by a quantized
amount, which could be a characteristic of phase slips but

FIG. 7. (Color online) The red solid line represents the time
evolution of the persistence probability P (t) in the dynamics of the 1D
BHM, where L = 160, ν = 1, U/J = 3, and n = 4. The longitudinal
axis is shown in a logarithmic scale. In the region sandwiched between
the two green dotted lines, P (t) decays exponentially. The blue dashed
line represents the best fit with a function of Eq. (35) to the data in
the exponentially decaying region.

         

         

FIG. 8. (Color online) The red circles represent the nucleation
rates of quantum phase slips $ extracted from the real-time dynamics
of the 1D Bose-Hubbard model with L = 160 as functions of the
flow (quasi-)momentum p, where U/J = 2.8 (a), 3 (b), and 3.2 (c).
The plots are shown in a log-log scale. In each plot, the blue solid
line represents the scaling formula of Eq. (31) with the constant C$
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gradually decreases in time. This is because the phase slip
jump is smoothed out by taking the quantum average of many
events. In each event a phase slip occurs at a different time.
Notice that the flow velocity is constant in time if one computes
classical dynamics of the Gross-Pitaevskii equation neglecting
quantum fluctuations.

To quantify the tunneling rate from the metastable state,
i.e., the nucleation rate of quantum phase slips, we calculate
the overlap of the wave function with the initial state P (t) =
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[39]. We first calculate the ground state of Eq. (33) with the
phase twist θ = 2πn/L via the imaginary time evolution, and
thereby a flowing state with the winding number n that is
metastable in the classical limit is prepared. Taking this state
as the initial state and setting θ = 0 at t = 0, we compute the
real-time evolution.
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FIG. 8. (Color online) The red circles represent the nucleation
rates of quantum phase slips $ extracted from the real-time dynamics
of the 1D Bose-Hubbard model with L = 160 as functions of the
flow (quasi-)momentum p, where U/J = 2.8 (a), 3 (b), and 3.2 (c).
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gradually decreases in time. This is because the phase slip
jump is smoothed out by taking the quantum average of many
events. In each event a phase slip occurs at a different time.
Notice that the flow velocity is constant in time if one computes
classical dynamics of the Gross-Pitaevskii equation neglecting
quantum fluctuations.

To quantify the tunneling rate from the metastable state,
i.e., the nucleation rate of quantum phase slips, we calculate
the overlap of the wave function with the initial state P (t) =

023638-8
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  vs	
  momentum	
  p	
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gradually decreases in time. This is because the phase slip
jump is smoothed out by taking the quantum average of many
events. In each event a phase slip occurs at a different time.
Notice that the flow velocity is constant in time if one computes
classical dynamics of the Gross-Pitaevskii equation neglecting
quantum fluctuations.

To quantify the tunneling rate from the metastable state,
i.e., the nucleation rate of quantum phase slips, we calculate
the overlap of the wave function with the initial state P (t) =
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gradually decreases in time. This is because the phase slip
jump is smoothed out by taking the quantum average of many
events. In each event a phase slip occurs at a different time.
Notice that the flow velocity is constant in time if one computes
classical dynamics of the Gross-Pitaevskii equation neglecting
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To quantify the tunneling rate from the metastable state,
i.e., the nucleation rate of quantum phase slips, we calculate
the overlap of the wave function with the initial state P (t) =

023638-8

Γ ∝ L× p2K−2

Scaling	
  formula	
  from	
  instanton:	


for	
  small	
  p	


TEBD	
  results	
  obey	
  the	
  scaling	
  formula	
  !!	


The	
  Lubnger	
  parameter	
  is	
  taken	
  from	
  
DMRG	
  results	
  by	
  Kühner	
  et	
  al.,	
  PRB	
  (2000)	


Devia4on	
  for	
  U=3.2J	
  is	
  rela4vely	
  large,	
  
probably	
  because	
  it	
  is	
  close	
  to	
  the	
  	
  
quantum	
  phase-­‐transi4on	
  point	
  (K=2).	


�Γ
/(
L
E

J
)

�Γ
/(
L
E

J
)

�Γ
/(
L
E

J
)



5.	
  Conclusions	

We	
  have	
  successfully	
  applied	
  TEBD	
  to	
  a	
  problem	
  of	
  macroscopic	
  
quantum	
  tunneling.	
  	


・	
  We	
  have	
  reviewed	
  TEBD	
  for	
  systems	
  with	
  periodic	
  boundaries.	


・	
  From	
  the	
  persistence	
  probability	
  
	
  	
  	
  we	
  have	
  calculated	
  the	
  nuclea4on	
  rate	
  of	
  quantum	
  phase	
  slips	
  
	
  	
  	
  both	
  for	
  coherent	
  oscilla4ons	
  and	
  decay	
  of	
  metastable	
  states.	

・	
  TEBD	
  results	
  are	
  in	
  good	
  agreement	
  with	
  the	
  instanton	
  results	
  
	
  	
  	
  in	
  the	
  semi-­‐classical	
  region.	
  

Other	
  twists	
  of	
  quantum	
  phase	
  slips:	
  	

・	
  Determining	
  the	
  cri4cal	
  point	
  for	
  the	
  superfluid-­‐Mou	
  insulator	
  transi4on	
  
	
  	
  	
  from	
  the	
  nuclea4on	
  rate	


・	
  Interpre4ng	
  an	
  experiment	
  on	
  cold-­‐atom	
  transport	
  [Fer4g	
  et	
  al.,	
  PRL	
  (2005)]	
  	
  
	
  	
  	
  in	
  terms	
  of	
  quantum	
  phase	
  slips	


Danshita	
  and	
  Polkovnikov,	
  PRA	
  84,	
  063637	
  (2011)	


Danshita,	
  in	
  prepara4on	


P (t) = |�Ψ(t)|Ψ(t = 0)�|2


