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1.1. What we can do with TEBD/tDMRG
Vidal, PRL (2003); PRL (2004) / White and Feiguin, PRL (2004)
W (t)) = exp(—iHt/h)|¥o)

One can exactly compute the time-evolution of the many-body wave function
in @ 1D quantum lattice system (open boundary is favored).

Eg. Ising model with ]:] —.J E 5?(}?+1 + h E agr
J ~J J
J J

transverse magnetic field:

1
An arbitrary state: ‘\I/> = E Ciy o, ig,....in |i1, 19,13, . . . ,’Ln>

i17i27i37'°°7in20

2" states are needed to span the entire Hilbert space.

We need an efficient way to describe the|many-body wave function]
and the[time propagation operator. Matrix product state

Suzuki-Trotter decomposition



1.2. Matrix product state (MPS) representation

1
An arbitrary state: ‘\If> = E Ciqin,iz,... in ‘il, 19,13, . . . ,Zn>

i13i27i37“'7in:0

Matrix product decomposition

X
Civisein = ) el ATEIG MDA - A AT e AT
a1,092,..., O{n_l—l
[': dxyxy-tensor, A: x-vector A2 is the eigenvalue of the

reduced density matrix.

Total number of the whole 9) d
elements of this MPS . X X X

In general, to describe an arbitrary state, one has to take ¥ ~ dm’2

However, for the ground state and low-lying excited states, taking a finite x
gives sufficiently accurate results.

The size of MPS increases only linearly with n.



Observation @: For the ground state,

Observation @: For lowly-excited states,
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A exp(-Ka), K >0

This requirement can
be held only in 1D !!

A@): exp(-K(t)ax), K(t)>0

=
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Example: the ground state
of the Bose-Hubbard model
with U/J = 100, n=400,
N=200, | = 200.

Taking a finite x can give an accurate description of

the many-body wave function.




1.3. Time propagation
W(t)) = exp(—iHt/h)| Vo)
Nearest neighbor Hamiltonian: H = Z [A(F] T Zf(%jajﬂ]

J J

Two-site operator: KUJH]

One-site operator: K{j] !

Separate the Hamiltonian into the “even” part and “odd” part

Zy:zz}géven'+']96dd

Z HUl — Z (KU 4 gl

even j even j

Z Il — Z([A({j] +f(£j,j+1])

odd j odd j

where Heyen

Hgaq



Suzuki-Trotter decomposition:

~ ~ R R t/d
exXp [_i(Heven + Hodd)t} — {eXp [_i(Heven + Hodd)é} }

. . . t/8
~ {exp(—iHevené/Q) exp(—iHoqad) exp(—iHovend /2) + 0(53)}
2 order Suzuki-Trotter decomposition

Furthermore, eXp( ZHeven5/2 H exXp _ZHeven5/2)

even j '
exp(—iHoaa6/2) = [ exp(~iHY},5/2)
odd j

Now the time propagation operator, whose dimension was originally d" x d",
is decomposed to local two-site operators of d2 X d

Operation on two neighboring sites:

bt b

Z Tl ]91)\[1]F[2]32 A2lIpBlas A\BIpldlia | . . plr—1ln-1 y[n=1lplnlin

12" 2" a3 ”™ (X3 (X2(X3 Op—20n—1" Op—1" Op—1

U3

Iy

&1, & —1



Two site operation:

: T = Z it . .
In a procedure without use of MPS, Cii-ivigy1--in ifir, , Cineifip g vin

Zz/‘z-q-l

In the MPS description,

_ . ilil+1 [l 1 [l]ll [l] [l—i—l]’LH_l [l—|—1]
(1) Forma4-rank tensor: @+ = = Z ALtptla APl e \[EE
= 1
./
- Q41 _ 17,8141 lel—i—l
(@ Apply the operator: ©1+1, = E Usr'ir O, s
i .a!
1'714+1
i ) [L]ijag—1 it N0 *
@ Form the reduced density matrix: P, =~ = g ot CHPINY
410041
[R]ij410041 _ 2 : @zle_l (éili2+1 )*
pi§+10‘f+1 Q11N Ty
1y

~

ey Singular value decomposition: ,O[L] — f[l], Al p[R] — i+

Qirii+1 :g)ﬂ—l]r[l] )\[]p[l+1]u+1)\[ +1]
ap 10741 oy 17 O 10 ara 41 41

Oélzl

@ Truncation: X X d — X Density matrix renormalization!!



What we wanted to do:

@ For a given Hamiltonian, calculate the ground state.
Imaginary time propagation:

(_HT)‘(I)pfd> Note:

> ‘ ’ This is not the most
efficient way to obtain
the ground state.

v.) = lim
Vo) = lim e T

where |®,.q) = H |7)
=1

@ For a given initial state and a given Hamiltonian,
calculate the time evolution.

W (t)) = exp(—iH1)|¥y)

For TEBD extended to periodic boundary condition,
see Danshita and Naidon, PRA 79, 043601 (2009)



Outline:
1. Time-evolving block decimation (TEBD)

2. Cold atom systems and motivation of this work

3. Coherent quantum phase slips:

Quantitative comparison with instanton techniques
Danshita and Polkovnikov, PRB 82, 094304 (2010)

4. Superflow decay via qguantum phase slips:

Testing a scaling formula
Danshita and Polkovnikov, PRA 85, 023638 (2012)

5. Conclusions



|. Bloch et al., RMP (2008)

2.1. What is an optical lattice ?

A periodic potential for atoms
= An optical lattice

V(z) = Vysin® (kx)

Interference of two counter-
propagating laser beams '

A BEC in a 1D optical lattice

Laser beams

— AVarayATAVAVAVAVAVA f
—>| |(— Lattice spacing:d = i/k ~ 500nm

A simple cubic lattice

. » .\s‘.é » - ‘g!“.....".,.)

beams = Controllability
* Cleanness



2.2. Bose-Hubbard model
. n U o |
H=_7J Z b;r-bl 4 E Z i (nj B 1) M. P. A. Fisher et al., PRB (1989)

D. Jaksch et al., PRL (1998)

Hopping energy Onsite interaction
N \/
J/EROCGXp S) U/ERO(CLS

When the filling factor v = N/L is an integer, the SF to Ml transition occurs
with increasing U/J as demonstrated by Greiner et al., Nature (2002).

b

Momentum
. A
distribution

at V,=3E,

Superfluid : Mott insulator —17/ ] *tum

(Ii Shallow lattice (U/IJ)C Deep lattice

We focus on the SF region
up to the Mott transition
in one dimension.

at VO—20 Er



2.3. 1D gases produced by optical lattices

l A 2D array of 1D Bose gases

H. Moritz et al., PRL (2003)
weaker

lattice

~@— =
/1

Advantages of one-dimensional systems:

hLUJ_ > Jy kBT

= Stronger quantum fluctuations

* Reliable analytical and numerical methods are available
e.g. Bosonization approach, Bethe ansatz,
Density matrix renormalization group (DMRG)
Quantum Monte Carlo (even for fermions)



2.4. TEBD versus experiments

MM MPI group: I. Trotzky et al., Nat. Phys. 8, 325 (2012)
1\ 2eleleleliolielnel

e Quantitative comparison between
200000000e0e0a( TEBD and cold-atom experiment

t-DMRG without free parameters !!!

TEBD agrees very well

Momentum
distribution

0 05 10 15 20 0 05 10 15 20 with the experiments.
4t /h 4Jt/h
oer Experiments can go further than
I TEBD ...
s 04—
Tt U/J = 516(7) ©0® Experiment
0.2~ K71=1.7x1072 tDMRG (only nearest
i neighbor hopping)
o - = = tDMRG (upto next nearest
0 1 2 3 4 5

alt/h hopping)



2.5. Applications of TEBD/tDMRG

* Dynamic correlation functions

White and Affleck, PRB (2008) 2.0
Feiguin and Huse, PRB (2009) etc

e.g. Dynamic structure factor
for the Hubbard model

1.6
! N — I INNT
Glx—2',t—t)=iO0(x,t)0"(x,t)) N
Fourier transform 3
) Spectral weight 0.8
I(k,w) =Y [(tbn|Okltho)[*6(w — E, + Eg) 04

* Non-equilibrium tclransport

Al-Hassanieh et al., PRB (2006); Feiguin et al., PRL (2008)
Heidrich-Meisner et al., EPJB (2009); Langer et al., PRB (2009);
Heidrich-Meisner et al., PRB (2009); Danshita and Clark, PRL (2009);

Montangero et al., PRA (2009) etc

https://netfiles.uiuc.edu/slal08/
www/research.html

- QuenCh dynamiCS, cLarﬁ'is;g?I‘
especially across quantum critical points

Kollath et al., PRL (2007); Manmana et al., PRL (2007)

etc
H(gi < gc) wws) H(gs > g.)

I
and more!! quench ! > g

-
”
g
g
g
g
v
g
g
g
v
v
d
4
'¢
’

quantum critical

Ordered
(symmet
broken)

\ 4




2.6. Macroscopic quantum tunneling (MQT)

Tunneling of macroscopic (collective) variables See e.g. a book

Macroscopic quantum phenomenon of the second kind by Takagi (2002)

Phenomenon Macroscopic variable

Collapse of Bose condensates

with attractive interactions Radius of the condensate

Spin flip of single-domain ferromagnets Magnetization
Phase separation of 3He-*He mixtures Radius of a 3He bubble
Superflow decay via phase slips Superflow velocity
Sketch of a single-domain ferromagnet %
Magnetic field e &
Q
Be, 5
a l' QJ
~2004A ey o| Quantum
) - Aﬂoﬁ ~| fluctuations

——— ~20008 —Mm—

Magnetization: M




2.7. Traditional method: Instanton technique
Coleman, PRD (1977);

In the semiclassical limit ( 7 < s7 ), Callan and Coleman, PRD (1977) ;
Polyakov, Nucl. Phys. B (1977)

@ For a coherent oscillation
in a symmetric double well

Energy splitting:

A = m%%[l +O(n)] exp (_%)

S1 :Instanton action

Energy splitting: A

A : Coefficient from Gaussian fluctuations ——

V(x)
@ For a decay of a metastable state

in a “bumpy” potential

Lifetime ~ 1/T

Decay rate:

I = hA\%[l + O(h)] exp (—%B)

SB : Bounce action Decay via

tunneling!!




Pros of TEBD/tDMRG over instanton

- More accurate

= Accessible to the region far away from the semi-classical limit

- Any observables can be calculated during real-time evolution

Cons

* Restricted to 1D systems

* Difficult to access the strictly semiclassical limit



2.8. Purposes of this work

We study the quantum nucleation of phase slips
of the 1D Bose-Hubbard model in order to

present the first application of TEBD to
macroscopic quantum tunneling.

Advantages of this system:

1. Nucleation rate can be calculated by the instanton method
in the quantum rotor regime (v>>1)

2. The effective Planck’s constant is well defined and
can be tuned by the Bose-Hubbard parameters !!!

U: onsite interaction, J: hopping

he — \/U/(VJ)

3. Relevant to experiments of ultracold atomic gases

I :atom number per site (filling factor)

Note: Quantum nucleation of phase slips are originally suggested in the context of
superconducting nanowires to explain supercurrent decay.
See, e.g., K. Yu. Arutyunov et al., Phys. Rep. (2008)



Outline:

1. Time-evolving block decimation (TEBD)

2. Cold atom systems and motivation of this work

3. Coherent quantum phase slips:

Quantitative comparison with instanton techniques
Danshita and Polkovnikov, PRB 82, 094304 (2010)

4. Superflow decay via qguantum phase slips:

Testing a scaling formula
Danshita and Polkovnikov, PRA 85, 023638 (2012)

5. Conclusions

Energy splitting: A




3.1. Overview of coherent phase slips

L L
A oaan U R
Bose-Hubbard model /7 = — 7 “(e=blb; 41 + h.c.) + > > ni(hy - 1).
with a phase twist: =1 =1
U : onsite interaction, J : hopping energy, 6 : phase twist

L : number of lattice sites, N : total number of particles

The (quasi-)momentum is discretized: p=2mn n/L

+E
A sketch of Supercurrent
energy landscape flowing

A current-free state

<

winding
number 1

Our target is the tunneling between the states with winding number n=0 and n=1.



3.1. Overview of coherent phase slips

L L
A oaan U R
Bose-Hubbard model 5 — —j Z(e Zeb;r-qutl + h.c.) + 5 an (n; —1).
with a phase twist: =1 =1
U : onsite interaction, J : hopping energy, 6 : phase twist

L : number of lattice sites, N : total number of particles

Saddle poinl% solution

AE
~Tn
A sketch of

energy landscape

oY,

¢ State withn=0

Q 27 : 27
(%] e
g - State with p=1 -
Q. L
o..A.
= I
o ~2n
Position i 0 winding P o
osition ] number 1 v’

The phase-kink slips during the tunneling process



3.2. How to simulate the supercurrent dynamics

@ Imaginary time AE
evolution for f = 271-/L

!

We obtain a state with n=1, |®,,—1), ; .
where n is the winding number. 0 Windti)ng] P
numper
. y'\
@) setting § = 0, = /L, £
—1Ht
we calculate ¢~ """ | Py 1)
and necessary observables.

oY

winding
number 1




3.3. Time evolution of the flow velocity d: lattice spacing

U/J=2.5, (L=16, N=16)

| Jd "
Flow velocity: v = Zﬁ—N Z<bjbj+1 — h.c.>
J ’(I)o> and ’(I)1>

are degenerate.

(Jd)

tE

>
~

=

O
)

velocity: v/

o
Oy

oY

50 100 150 0 rwinding
time : t J /h number 1

Coherent oscillation between the velocity v(t=0) and O !



3.4. Overlaps and momentum occupations
_ Tt
vsin? () | overlap: wy (1) = | (@, ¥ (1))

1.0

sl \ where |®,, ) is the ground state of
a | .
< 0.6 H for the phase twist § = 27TTL/L
> 0.4]
o n=1

0.2 A T -

N/ | . -1

150

time : t J /h

The wave function is approximately
described by a cat state,

> The coherent oscillation is due to MQT!

T : period of the oscillation

2mh
LEnergy splitting: A = %J




3.5. Comparison between instanton and TEBD

Instanton energy splitting for v>>1:

() 0.500}
Alns ST ST
—2LA exp | ——
0.100} Ey 21 he he
0.050F Fori=8, §; = 7.363, A = 3.06
[’ where v = N/L, E; = vVvJU
~ 0.010F
0.005} (E) 04
TEBD a et
eee V=10 \, 03 ".. -
0.001F === =1000 | Aa
Co02F
Instanton o T =10
......................... Y| IR - =1000]
06 08 10 12 14 16 18 B R Y e
he he

For v = 1000, as h, decreases the error also decreases such that
it is within 10% when h, < 0.7.
The error for v = 10 is significantly larger and does not depend even

monotonically on h,. This means that at this filling the mapping to the
guantum rotor model is invalid.




Note: Bose-Hubbard model with high filling factors

=177, a®a_ w
(b) Truncate| o & . ol | o |Truncate
5 n ]

10 r«.: :#. h
/\10'10 [ B | m o ]
Ny ® =8 m ®
E/ o _ . °

10°5F, v =1000 "=

10°2% ) U/(VJ) =05 m .1

o>t . .\ N

990 995 1000 1005 1010
n
b) IR .. '

0.8

=06
—

> 0.4t
2 0.

0.2 v =1000
ok - U)=1 3\, |
| 0 01 02 03 04

time : tJ /A
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Vix) Lifetime ~ 1/T

Note:
Similar dynamics have been studied using iTEBD. Decay via

Schachenmayer, Pupillo, and Daley, NJP (2010) tunneling!!



4.1. Overview of supercurrent decay via phase slips

FA
Thermal activation

2 //\\ Winding
o number n
(e
()]
O Quantum tunneling
C

—» p

Momentum

Sl ]
~ oos) ]
~ |
= 06 ]
< ,
g | K/=3
®© | )
S | :
£ o K=4
2 L =
S ool — K =95
Z 00

L L 1 L L L L 1 L L L L 1 L L L L L L
0.1 0.2 03 0.4 0.5

Momentum: pd/h

The instanton method gives
the nucleation rate for a phase slip:

I x L x p*t—2

for small p

K: Luttinger parameter

1/K quantifies the strength of
guantum fluctuations from
classical wave.



* Tomonaga-Luttinger liquid

Euclidean action for the TL liquid:

h
S - —
L 2T

AN
Cs \ OT "\ Oz
K : TL parameter

9 : phase of the bosonic field, Cg : sound velocity,
If one starts with the Bose-Hubbard model and [/ / (VJ ) <1,

8;
§ —K—W\/QVJ/U cs >~ V2vJUd/h
| v=1 |
65— K ~ W\/QVJ/U
& s} 1/K quantifies the strength of healing length
) quantum fluctuations from " interparticle distance
: sical wave. 7
. e e (00000

T R W Superfluid K

U/J I K.=2




4.2. How to simulate the supercurrent dynamics

. : AE
@ Imaginary time

evolution for = 27TTL/L

!

We obtain a state with n, (I)n> )
where n is the winding number.

Case of n=2

Q) setting § = 0, TE

we calculate e~ “! D)

Case of n=2

i Il
and necessary observables. Tunneling!!




4.3. Extracting the nucleation rate I U/J =3

>
T
T T h

o o o
b ) )
N N ox
—————

S
\®)
S

Flow velocity: v(y) A/ (Jd)

1.00F

0.70}

Persistence probability: P(?)
2

Fitted interval

Time: t.J/h

L =N =160
n = 4 (pd = 7/20)

Flow velocity:
Jd ot
— z_hN (a;-a,j+1 — hC)
J

U

Persistence probability:

P(t) = [(U()[¥(t = 0))

Fitting function:

f(t) = Aexp(—T)



4.4. The nucleation rate ' vs momentum p

' 2x 103
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o 1x107%
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S 5x10*
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S 5y 104 )

g 2310 U=2.8J ]
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= 1x107

% 5%10
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S 2x10™

3

g 1x10* U=3.0J -

z | | - (K=12.37)

> 10} 0.10 0.15 0.20 0.30

Ry % ' ' ' i

R

o 2x103

<

8 1x107

g

8 5%x10*

<

2

S 2x10* U=32J.

Z (K=2.17)
0.10 0.15 0.20 0.30

Momentum: pd / %

Scaling formula from instanton:

I x L x p?t—2

for small p

The Luttinger parameter is taken from
DMRG results by Kihner et al., PRB (2000)

TEBD results obey the scaling formula !!

Deviation for U=3.2J is relatively large,
probably because it is close to the
guantum phase-transition point (K=2).



5. Conclusions
We have successfully applied TEBD to a problem of macroscopic
guantum tunneling.

- We have reviewed TEBD for systems with periodic boundaries.

+ From the persistence probability P(t) = [(U(¢)|U(t = 0))|?
we have calculated the nucleation rate of quantum phase slips
both for coherent oscillations and decay of metastable states.

- TEBD results are in good agreement with the instanton results
in the semi-classical region.

Other twists of quantum phase slips:

- Determining the critical point for the superfluid-Mott insulator transition

from the nucleation rate
Danshita and Polkovnikov, PRA 84, 063637 (2011)

* Interpreting an experiment on cold-atom transport [Fertig et al., PRL (2005)]
in terms of quantum phase slips

Danshita, in preparation

Displacement x,,



