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Motivation

Shell structure Different structure
in stable nuclei (Z~N) ' in exotic nuclei (ZKN, Z>N)
Some magic numbers disappear
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Ground state has spherical shape
Excited states are higher
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open shell nucleus:
Nucleus can have deformed shape
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Motivation

Phenomena in exotic nuclei (Z&N, Z>N)

Evolution of shell structure Shape coexistence

States of different shape coexist
Size of shell gaps changes

Magicity becomes strong/weak

Necessity of large-scale calculations
in large model space



Shell model calculation
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Monte Carlo shell model (MCSM)

More than 10 (in our model space)
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Monte Carlo Shell Model

bases important for a specific eigenstate
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Energy-variance extrapolation

Extrapolation of °3Ni O*
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Parallel calculation

Calculational bottleneck is integration over 3D rotations
to restore the angular momentum
= # of total mesh points ~ 50,000

Calculated parallelly for each mesh point

Calculated on K computer (AICS),
FX10 (U. Tokyo),

and T2K Open Supercomputer b
(U. Tokyo, U. Tsukuba) K computer

14 hours, 7680 CPU cores for 8Ni 8* (K computer)




2" ex. energy

B(E2; 0"—>2%):
reduced transition

probability

4
35
>
% 25
? 1.5
S

< 05|
w9

< 2500

S

AN

D 2000

T 1500

~

N 1000

+

© 500 |

~

Yoo

o

Results of Cr and Ni
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Neutron excitation across N=40 gap
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PES (energy contour plot of various shapes)

0*, state of ®3Ni (Z=28, N=40)

Potential energy surface

(PES) is calculated
by Constrained HF

Location of circle:
guadrupole
deformation of
unprojected
MCSM basis

Area of circle:
overlap probability
between each )
projected basis and
wave function

-292.1

-293.1

-294.1

-295.1

-296.1

-297.1

-298.1

1-299.1

-300.1

-301.1

-302.1

-303.1

-304.1




°8Nj 0* states < different shapes
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We diagonalize 0%, : oblate g ~-0.2

the quadrupole moment - -
to get principal axes .
B: deformation parameter
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Level scheme of %8N
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Summary

* MCSM calculations for Cr, Ni nuclei in pfg9d5-shell

* Analysis of nuclear shape by using
overlap and deformation of MCSM bases

 N=40 magicity changes between Cr and Ni

* Three 0% states of ®3Ni < three different shapes
within 3 MeV (shape coexistence)

» Calculated excitation energies of %3Ni
agree with experiments

s> Unified description by using the same Hamiltonian
due to large-scale calculation



