

Nuclear Physics at RIBF

- 1. Facility Overview
- 2. Nuclear structure & astrophysics Highlights and on-going programs
- 3. Toward "Island-of-Stability"
- 4. Summary

H. Sakurai

RIKEN Nishina Center/Dept of Phys., Univ. of Tokyo

RI=Radioactive Isotope B=Beam F=Factory Mass production of radioactive isotopes as secondary beams

In-flight Production Method of RI beam

World's First and Strongest K2600MeV Superconducting Ring Cyclotron

400 MeV/u Light-ion beam 345 MeV/u Uranium beam

World's Largest Acceptance 9 Tm Superconducting RI beam Separator

~250-300 MeV/nucleon RIB

Press-Conference on June 8th, 2010

Scientists discover 45 new radioisotopes in 4 days

T. Ohnishi et al., JPSJ 79, 073201 (2010) D.Kameda et al., PRC 84 054319 (2012); 18 new isomers

neutrons

Challenges at the RIBF

Shell Evolution : magicity loss and new magicity

Dynamics of new "material" : Neutron-skin(halo)

R-process path: Synthesis up to U

EOS: asymmetric nuclear matter SN explosion, neutron-star, gravitational wave

New Experimental Devices of RIBF

To maximize the potentials of intense RI beams available at RIBF

SCRIT Electron Scattering Facility

"Rare RI Ring" for mass measurement

Construction started in April 2012! Ozawa, Wakasugi, Uesaka et al. **Extraction Septum Magnet** Schottky Specialized to mass measurements detector of r-process nuclei Low production rate ($\sim 1/day$) Injection Septum Short life time (<50ms) Magnet **Kicker Magnet** Key technologies: Rare RI beam Isochronous ring e-RI scattering with SCRI $\Delta T/T < 10^{-6} \text{ for } \delta p/p = \pm 0.5\%$ Individual injection triggered by a detector at BigRIPS **Schedule:** efficiency $\sim 100\%$ 2014 Commissioning run even for a "cyclotron" beam 2015~ Mass measurements of RI

SAMURAI Spectrometer Kobayashi et al 2012-

versatile spectrometer with a large superconducting magnet

Experimental Devices available at the new facility

Shell Evolution : In-beam gamma and decay spectroscopy

D. Steppenbeck, S. Takeuchi et al.

Collectivity enhancement toward the drip line in Ne and Discovery of deformed halo nucleus ³¹Ne DayOne in 2008

A large deformation at Z=10-12 in spite of N=20 A pilot-region for nuclear structure Interplay of three ingredients: Weakly-bound natures Tensor forces Pairing

Collectivity enhancement toward the drip line?

A new candidate of halo nuclei: ³¹Ne

Large Coulomb breakup cross section Total X-section Jump at ^{29,,31}Ne

Halo Structures of ²⁹Ne and ³¹Ne

Extension of the deformation region up to the drip-line

Doornenbal, Scheit, et al.

Ne-32 1st excited states: PRL 103, 032501 (2009) New states in ^{31,32,33}Na: PRC 81, 041305R (2010) Mg-36,-38: ARIS11; in preparation F-29: in preparation <u>Chevier, Ueno et al.,</u> Intruder state in S-43: PRL 108, 162501 (2012) <u>Takeuchi et al.</u> Si-42 : PRL109, 182501 (2012)

Collectivity of the neutron-rich Mg isotopes

2009 Dec.

U beam to access A~110 region Collectivity

triaxiality, shape-coexistence, etc Intensity 0.8 pnA max.

0.1-0.2 pnA on average

2.5 days for data accumulation

Sumikama, Nishimura, et al.

Clovers (RIKEN) LaBr₃ (Milano) 9 layers of DSSD (RIKEN, TUS)

Exotic Collective-Motions at A~110 and **Their Applications to the R-process Nucleosynthesis**

109 Nb ₆₈ -0.5

42 44 46 48

First "touch" for the r-process nuclei

S. Nishimura et al.

8 hour data acquisition
T1/2 data of 38 isotopes including first data for 18 isotopes
FRDM may underestimate Q-value for Zr and Nb by 1 MeV at A~110
More rapid flow in the rapid neutron-capture process than expected S. Nishimura et al., PRL 106 (11) 052502

1/3 ~ 1/2 Shorter Half-lives of Zr and Nb (A~110)

EUROBALL-<u>RI</u>KEN <u>C</u>luster <u>A</u>rray (EURICA) 2012-14

First decay spectroscopy in 2009

4 clovers U beam ~0.1pnA 2.5 days MT

4 papers

Total gain factor for gamma-ray statistics at EURICA campaign in 2012-14 x1000 gamma efficiency x10 primary beam intensity x100 Approved MT 100 days Estimation for number of papers expected ~100 days * 4 papers/2.5 days= ~160 Cf. RHIC PHENIX ~100 papers/10years 2012 March Commissioning June N=Z decay experiment

Perspectives of gamma-spectroscopy for next 5 years

Two-step production of Spin-Aligned Rare Isotope Beams Y.Ichikawa, <u>H.Ueno</u> et al., Nature Physics, on-line Dispersion matching technique 0.10 Dipole magnet 0.05 Superconducting triplet Q magnet ³²Al beam R(t) 0.00 Secondary target (AI) Single-step method Two-step method 700 $^{48}Ca \rightarrow ^{33}Al \rightarrow ^{32}Al$ $^{48}Ca \rightarrow ^{32}AI$ Reaction Energy 200 MeV/nucleon 345 MeV/nucleon 10-mm thick Be 4-mm thick Be Primary ta Target 0.4% 2.0% σ $\pm 0.15\%$ $\pm 0.5\%$ $\Delta p/p$ $p(^{32}AI)$ 39(3)% 85(3)% $Y(^{32}AI)$ 2.3(2) kcps 8.6(3) kcps (1/100 Att.) $Y(^{32m}AI)$ 0.87(6) kcps (1/100 Att.) 0.54(5) kcps 50(6)% 59(5)% 8(1)% $<0.8\%(2\sigma)$ FOM < 0.02 Meas. duration 11.9 h 9.3 h

RIKEN RI Beam Factory (RIBF)

Intense (80 kW max.) H.I. beams (up to U) of 345AMeV at SRC Fast RI beams by projectile fragmentation and U-fission at BigRIPS Operation since 2007

K. Morita et al., J. Phys. Soc. Jpn. 81 (2012) 103201

Best Inventions of the Year 2012 | Element 113 | TIME.com

\$1 million - \$2.5 billion **Element 113** Price: \$3 million By <u>TIME Staff</u> Nov. 01, 2012

nishina.riken.jp A time sequence of consecutive α -decays from element 113

After nine years of work,

a team led by Kosuke Morita at the RIKEN Nishina Center for Accelerator-Based Science in Japan has created three atoms of the highly unstable superheavy element 113. As yet nameless, it has an enormous nucleus containing 113 protons and 165 neutrons.

Challenge for the limit of existence

How to Create More N-rich and Heavier Nuclei?

RIBF Theory Forum

New Projects toward the island-of-stability

For polarized deuteron only **SRC**

RIBF has started in operation since 2007.

Mass and charge-distribution measurements are being prepared.

Bunch of data for shell evolution and nuclear astrophysics are being produced via in-beam gamma spectroscopy and decay spectroscopy

Spin-aligned beams will give big opportunities for electro-magnetic moment and new types of reaction studies.

Primary beam intensity is increased year by year to expand our play ground.

Toward the island-of-stability, new programs are being considered.