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•The nature of the chiral phase transition of Many Flavor QCD 
[MFQCD] depends on the number of flavors and the masses.
 Pisarski and Wilczek, PRD 29, 338 (1984) and many evidences from lattice.

•EW baryogenesis in TC models. (TC is strongly interacting 
vector-like gauge theory. Its SχSB triggers EWSB.)
Appelquist, Schwetz and Selipsky, PRD52, 4741 (1995);
Kikukawa, Kohda and Yasuda, PRD77 (2008) 015014

•As the first step toward the exploration of this possibility,
we consider 2(light)+Nf (heavy)-flavor QCD, propose an easy 
method to explore the phase structure of this system and 
demonstrate the feasibility of the method.

Introduction



Columbia plot for 2+1 QCD
Brown, Butler, Chen, Christ, Dong, Schaffer, Unger, and Vaccarino (90),
N.H. Christ, Z. Dong (92) and N.H. Christ(92)

When NF ≧ 3 (or 2?), Chiral Phase Transition around the massless limit is 1st order.
Pisarski and Wilczek, PRD 29, 338 (1984). See also Cossu et al.; Aoki, Fukaya, Taniguchi (2012)

Extend Columbia plot to 2+Nf QCD.

Kanaya, Lattice 2010
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Finite Temperature QCD on the Lattice – Status 2010 Kazuyuki Kanaya

Figure 3: Order of the finite temperature transition in 2+1 flavor QCD as a function of the degenerate u

and d quark mass m

ud

and the s quark mass m

s

. (Left) The standard scenario with the second order chiral
transition for two-flavor QCD. (Right) An alternative scenario when the two-flavor chiral transition is first
order.

experimental investigations of QGP. Estimation of T

c

in 2+1 flavor QCD has been made based on
large-scale simulations using various improved staggered quarks. However, there has been a big
discrepancy in the values of T

c

among different groups for more than five years. This year, the main
part of the discrepancy has been removed.

The nature of the transition in the chiral limit of two-flavor QCD (the upper left edge of the
figure) has significant implications for the nature of the transition at the physical point too. The
left panel of Fig. 3 summarizes the standard scenario in which the chiral transition of two-flavor
QCD is second order in the universality class of the O(4) Heisenberg model [33]. In this case,
because the chiral transition of three-flavor QCD is of first order, we have a tricritical point on
the left edge of the figure (m

ud

= 0) where the order of the transition changes from the second
order to the first order. Depending on the location of the tricritical point relative to the physical
point, the universality class dominating the parameter dependence around the physical point will
be different. The right panel of Fig. 3 shows an alternative scenario in which the chiral transition of
two-flavor QCD is first order. In this case, we have no tricritical point and thus no regions for the
O(4) universality class. A distinction between the two scenarios is important for studies at finite
densities too. Although the majority view the standard scenario as more probable, the nature of the
two-flavor chiral transition was not fully fixed. This year, we had some advances.

In this section, I discuss these developments.

3.1 Transition temperature

In 2005, the MILC Collaboration obtained T

c

= 169(12)(4) MeV in the combined chiral and
continuum limit from a measurement of a chiral susceptibility in 2+1 flavor QCD with asqtad
quarks and the one-loop Symanzik glues on N

t

= 4–8 lattices [34], where the scale was set by r1

and the O(4) critical exponent was adopted in the chiral extrapolation. In 2006, the Wuppertal-
Budapest Collaboration has published their values based on a study of the 2+1 flavor QCD with a
stout-link improved staggered quarks coupled to the tree-level Symanzik glues [35]. Carrying out
a chiral extrapolation to the physical point and a continuum extrapolation using N

t

= 6–10 lattices,
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In TC, two flavors must be 
exact massless.
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Walking with γm~O(1) is 
expected at an appropriate Nf.

For EW baryogenesis, 
important to identify the 
location of the 1st order region 
and its strength.
Appelquist, Schwetz and Selipsky, 
PRD52, 4741 (1995).
Kikukawa, Kohda and Yasuda, PRD77 
(2008) 015014
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Effective potential through histogram
S. Ejiri, PRD77, 014508 (2008);Saito et al, [WHOT-QCD], PRD84, 054502 (2011)

Phase 1: Determination of the critical end point in K-β plane June 6, 2012

Under the change from β0 to β, w(P ;β,κ) and Veff(P ;β,κ) have the following properties:

w(P ;β,κ) = e6 (β−β0)NV P w(P ;β0,κ), (9)

Z(β,κ) =

∫

dP ′e6(β−β0)NV P ′

w(P ′;β0,κ), (10)

H(P ;β,κ) = e6 (β−β0)NV P w(P ;β0,κ)

Z(β,κ)

= e6 (β−β0)NV P Z(β0,κ)

Z(β,κ)
H(P ;β0,κ), (11)

Z(β,κ)

Z(β0,κ)
=

∫

dP ′e6(β−β0)NV P ′

w(P ′;β0,κ)

Z(β0,κ)
=

∫

dP ′e6(β−β0)NV P ′

H(P ′;β0,κ), (12)

− ln

(

H(P ;β,κ)

)

= Veff(P ;β,κ) + ln

(

Z(β,κ)

)

= Veff(P ;β0,κ) + ln

(

Z(β0,κ)

)

− 6 (β − β0)NV P + ln

(

Z(β,κ)

Z(β0,κ)

)

= − ln

(

H(P ;β0,κ)

)

− 6 (β − β0)NV P + ln

(

Z(β,κ)

Z(β0,κ)

)

, (13)

−

d ln

(

H(P ;β,κ)

)

d P
=

d Veff(P ;β,κ)

d P
=

d Veff(P ;β0,κ)

d P
− 6 (β − β0)NV

= −

d ln

(

H(P ;β0,κ)

)

d P
− 6 (β − β0)NV , (14)

Veff(P ;β,κ) = Veff(P ;β0,κ) − 6 (β − β0)NV P, (15)

dVeff(P ;β,κ)

dP
=

dVeff(P ;β0,κ)

dP
− 6 (β − β0)NV . (16)

In Fig. 1, some exapmples are shown, where the plaquette histogram is represented in red, the effective
potential in green, and dVeff/dP in blue. As seen from Fig. 1(a), if only the single peak is present in the
histogram, the potential is single well and its derivative wrt P is monotonically increasing, while, with the
double peak, the potential have double well and its derivative takes “S”-shape.
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Figure 1: Example of (a) single peak and (b) double peak in histogram.

In the analysis, we
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The partition function for 2+Nf-flavor QCD is

Z(2+Nf)(β, ml,mh, µ)

≈
∫

DU e6βNsiteP̂ × |det M(ml, 0)|2 × exp

[
2

Nµ∑

n=1

1

n!

[
∂n(ln det M)

∂(µ/T )n

](µ

T

)n
]

exp
[
6N3

s hΩ
]

〈O〉2+Nf−flavor, β,µ,κh

=

〈
O exp

[
2
∑6

n=1
1
n!

(
∂n(ln det M)

∂(µ/T )n

) (
µ
T

)n
]
exp [6 hN3

s Ω]
〉

two−flavor, β〈
exp

[
2
∑6

n=1
1
n!

(
∂n(ln det M)

∂(µ/T )n

) (
µ
T

)n
]
exp [6 hN3

s Ω]
〉

two−flavor, β

=

〈
O

(
1 + X̂(1)

µ
µ
T

)
×

(
1 + Ŷ (4)

κh κ
4
h

)〉

two−flavor, β〈(
1 + X̂(1)

µ
µ
T

)
×

(
1 + Ŷ (4)

κh κ
4
h

)〉

two−flavor, β

h = 2Nf(2κh)
Nt

w(P, β) = 〈δ(P − P̂ )〉β
Veff(P, β) = − ln w(P, β)

= − ln w(P, β0) + 6(β − β0)NsiteP

w(2+Nf)(P, β, ml,mh, µ) = 〈δ(P − P̂ )〉(2+Nf )flavor,β,ml,mh,µ

=

∫
DUDψDψ̄ δ(P − P̂ ) e−Sq−Sg

=

∫
DU δ(P − P̂ ) e6βNsiteP̂

Nf+2∏

f=1

(det M(mf , µf ))(6)

Veff(P, β,mf , µf ) = − ln w(2+Nf)(P, β, ml,mh, µ)(7)

Nsite ≡ N3
s ×Nt is the number of sites. β = 6/g2

0 P̂ = −Sg/(6Nsiteβ). Z=
∫

w(P )dP

Double well potential
=1st order PT
⇒look for ∂2Veff/∂P2 ≤ 0



•Start with the partition function with 2+Nf-flavor QCD.

•Nf flavors are heavy and the chemical potential for u and d quarks 
are small.

Re-weightingEQUATIONS

N. YAMADA

Z(β, mf , µf ) =

∫
DUDψDψ̄ e−Sq−Sg =

∫
DU e6βNsiteP̂

Nf+2∏

f=1

(det M(mf , µf )),(1)

w(P, β,mf , µf ) =

∫
DUDψDψ̄ δ(P − P̂ ) e−Sq−Sg

=

∫
DU δ(P − P̂ ) e6βNsiteP̂

Nf+2∏

f=1

(det M(mf , µf )),(2)

where, δ(x) is the delta function, Sg and Sq are the gauge and quark action,
respectively, and M the quark matrix. Nsite ≡ N3

s × Nt is the number of sites.
The lattice bare parameter β = 6/g2

0 is chosen such that the simulation point is
close to the transition point. P̂ is the (generalized) plaquette defined by P̂ =
−Sg/(6Nsiteβ). Normalizing eq. (2) by the partition function, Z=

∫
w(P )dP , gives

the histogram for P̂ . We take the standard plaquette gauge action in this work,
thus P̂ is the plaquette averaged over the whole sites. for the standard plaquette
gauge action, and is a linear combination of Wilson loops for improved gauge
actions. The effective potential is then given by

Veff(P, β, mf , µf ) = − ln w(P, β,mf , µf ).(3)

We consider QCD with two degenerate light quaks of the mass ml and Nf heavy
ones with mh. Furthermore, we let the two light quarks have a small chemical po-
tential µ. Then, taking a first few terms in the double expansions around 1/mh=0
and µ/T=0 are validated as an good approximation to eq. (3). To be specific,
defining the potential of two-flavor QCD with zero density by V0(P, β), that of
2+Nf-flavor QCD is written as [4]

Veff(P, β,mh, µ) = V0(P, β0) − ln R(P ; β, mh, µ; β0),(4)
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with

ln R(P ; β,mh, µ; β0) = 6(β − β0)NsiteP

+ ln

〈
δ(P − P̂ )

(
det M(ml, µ)

det M(ml, 0)

)2 Nf∏

h=1

(
det M(mh, 0)

det M(∞, 0)

)〉

β〈
δ(P − P̂ )

〉

β

,

(6)

where 〈· · · 〉β denotes the ensemble average over two-flavor configurations generated
at β, ml and the vanishing µ. Since the ml dependence of the potential is not
discussed in the following, it is omitted from the arguments. Notice that eq.(5)
relates simulations at different β values. Thanks to this, by performing a number
of simulations at various β, we can study the potential in a wide range of P . The
first determinant in eq. (6) is approximated by

ln

[
det M(ml, µ)

det M(ml, 0)

]
=

Nµ∑

n=1

1

n!

[
∂n(ln det M)

∂(µ/T )n

](µq

T

)n
,(7)

with the truncation error of O[(µq/T )Nµ+1]. Similarly, the second determinant in
eq. (6) is approximated to the leading order as

ln

[
det M(κh, 0)

det M(0, 0)

]
= 288Nsiteκ

4
hP + 12N3

s (2κh)
NtΩ + · · ·(8)

for the Wilson quark action

ln

[
det M(mh, 0)

det M(∞, 0)

]
=

36Nsite

(2mh)4
P +

6N3
s

(2mh)Nt
Ω + · · ·(9)

for the four-flavor standard staggered quark. κh in eq. (8) is the hopping parameter
being inversely proportional to the heavy mass, and Ω is the real part of the
Polyakov loop.

At a first order transition point, Veff shows, as a function of P , a double-well
structure, and in turn the curvature (or equivalently the second derivative) of
the potential d2Veff/d2P vanishes at two values of P . In general, to find the first
order phase transition by observing this behavior, a fine tuning of β is required.
However, since d2Veff/dP 2 does not depend on β and hence d2Veff/dP 2 over the
wide range of P can be easily obtained by combining data obtained at different
β [4], no fine tuning is necessary in this case. In the following analysis, we mainly
focus on the curvature of the effective potential to identify the nature of the phase
transition.

In the µ=0 case, with the formula in eq. (8) or (9), eq. (6) is calculated at
arbitrary values of β and small κh (or large mh). Denoting h = 2Nf(2κh)Nt for the

2 N. YAMADA

with

ln R(P ; β,mh, µ; β0) = 6(β − β0)NsiteP

+ ln

〈
δ(P − P̂ )

(
det M(ml, µ)

det M(ml, 0)

)2 Nf∏

h=1

(
det M(mh, 0)

det M(∞, 0)

)〉

β〈
δ(P − P̂ )

〉

β

,

(6)

where 〈· · · 〉β denotes the ensemble average over two-flavor configurations generated
at β, ml and the vanishing µ. Since the ml dependence of the potential is not
discussed in the following, it is omitted from the arguments. Notice that eq.(5)
relates simulations at different β values. Thanks to this, by performing a number
of simulations at various β, we can study the potential in a wide range of P . The
first determinant in eq. (6) is approximated by

ln

[
det M(ml, µ)

det M(ml, 0)

]
=

Nµ∑

n=1

1

n!

[
∂n(ln det M)

∂(µ/T )n

](µ

T

)n
,(7)

with the truncation error of O[(µq/T )Nµ+1]. Similarly, the second determinant in
eq. (6) is approximated to the leading order as

ln

[
det M(κh, 0)

det M(0, 0)

]
= 288Nsiteκ

4
hP + 12N3

s (2κh)
NtΩ + · · ·(8)

for the Wilson quark action

ln

[
det M(mh, 0)

det M(∞, 0)

]
=

36Nsite

(2mh)4
P +

6N3
s

(2mh)Nt
Ω + · · ·(9)

for the four-flavor standard staggered quark. κh in eq. (8) is the hopping parameter
being inversely proportional to the heavy mass, and Ω is the real part of the
Polyakov loop.

At a first order transition point, Veff shows, as a function of P , a double-well
structure, and in turn the curvature (or equivalently the second derivative) of
the potential d2Veff/d2P vanishes at two values of P . In general, to find the first
order phase transition by observing this behavior, a fine tuning of β is required.
However, since d2Veff/dP 2 does not depend on β and hence d2Veff/dP 2 over the
wide range of P can be easily obtained by combining data obtained at different
β [4], no fine tuning is necessary in this case. In the following analysis, we mainly
focus on the curvature of the effective potential to identify the nature of the phase
transition.

In the µ=0 case, with the formula in eq. (8) or (9), eq. (6) is calculated at
arbitrary values of β and small κh (or large mh). Denoting h = 2Nf(2κh)Nt for the

M:quark matrix
P :plaquette
Ω:Re[Polyakov loop]



Expectation value in 2+Nf-flavor QCD and its mh-dependence can be 
calculated by ensemble average over two-flavor QCD configurations upto 
truncation errors.
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DU e6βNsiteP̂ × |det M(ml, 0)|2 × exp

[
2

Nµ∑

n=1

1

n!

[
∂n(ln det M)

∂(µ/T )n

](µ

T

)n
]

exp
[
6N3

s hΩ
]

〈O〉2+Nf−flavor, β,µ,κh

=

〈
O exp

[
2
∑6

n=1
1
n!

(
∂n(ln det M)

∂(µ/T )n

) (
µ
T

)n
]
exp [6 hN3

s Ω]
〉

two−flavor, β〈
exp

[
2
∑6

n=1
1
n!

(
∂n(ln det M)

∂(µ/T )n

) (
µ
T

)n
]
exp [6 hN3

s Ω]
〉

two−flavor, β

=

〈
O

(
1 + X̂(1)

µ
µ
T

)
×

(
1 + Ŷ (4)

κh κ
4
h

)〉

two−flavor, β〈(
1 + X̂(1)

µ
µ
T

)
×

(
1 + Ŷ (4)

κh κ
4
h
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V0(P, β) = Veff(P, β, ml,∞, 0) = − ln w(2+Nf)(P, β,ml,∞, 0).

Nsite ≡ N3
s ×Nt is the number of sites. β = 6/g2

0 P̂ = −Sg/(6Nsiteβ). Z=
∫

w(P )dP
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1 + Ŷ (4)

κh κ
4
h

)〉

two−flavor, β

h = 2Nf(2κh)
Nt

w(P, β) = 〈δ(P − P̂ )〉β
Veff(P, β) = − ln w(P, β)

= − ln w(P, β0) + 6(β − β0)NsiteP

w(2+Nf)(P, β, ml,mh, µ) = 〈δ(P − P̂ )〉(2+Nf )flavor,β,ml,mh,µ

=

∫
DUDψDψ̄ δ(P − P̂ ) e−Sq−Sg

=

∫
DU δ(P − P̂ ) e6βNsiteP̂

Nf+2∏

f=1

(det M(mf , µf ))

Veff(P, β, ml,mh, µ) = − ln w(2+Nf)(P, β, ml,mh, µ)

V0(P, β) = Veff(P, β, ml,∞, 0) = − ln w(2+Nf)(P, β,ml,∞, 0).

Nsite ≡ N3
s ×Nt is the number of sites. β = 6/g2

0 P̂ = −Sg/(6Nsiteβ). Z=
∫

w(P )dP



Expectation value in 2+Nf-flavor QCD and its mh-dependence can be 
calculated by ensemble average over two-flavor QCD configurations upto 
truncation errors.

Re-weighting

2 N. YAMADA

The partition function for 2+Nf-flavor QCD is

Z(2+Nf)(β, ml,mh, µ)

≈
∫

DU e6βNsiteP̂ × |det M(ml, 0)|2 × exp

[
2

Nµ∑

n=1

1

n!

[
∂n(ln det M)

∂(µ/T )n

](µ

T

)n
]

exp
[
6N3

s hΩ
]

〈O〉2+Nf−flavor, β,µ,κh

=

〈
O exp

[
2
∑6

n=1
1
n!

(
∂n(ln det M)

∂(µ/T )n

) (
µ
T

)n
]
exp [6 hN3

s Ω]
〉

two−flavor, β〈
exp

[
2
∑6

n=1
1
n!

(
∂n(ln det M)

∂(µ/T )n

) (
µ
T

)n
]
exp [6 hN3

s Ω]
〉

two−flavor, β

=

〈
O

(
1 + X̂(1)

µ
µ
T

)
×

(
1 + Ŷ (4)
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where 〈· · · 〉β denotes the ensemble average over two-flavor configurations generated
at β, ml and the vanishing µ. Since the ml dependence of the potential is not
discussed in the following, it is omitted from the arguments. Notice that eq.(??)
relates simulations at different β values. Thanks to this, by performing a number of
simulations at various β, we can study the potential in a wide range of P .
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Nt for the Wilson quark action
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Notice that R̄(P ;κh, 0) does not depend on β.
At a first order transition point, Veff shows, as a function of P , a double-well

structure, and in turn the curvature (or equivalently the second derivative) of the
potential d2Veff/d2P vanishes at two values of P . In general, to find the first order
phase transition by observing this behavior, a fine tuning of β is required. However,
since d2Veff/dP 2 does not depend on β and hence d2Veff/dP 2 over the wide range
of P can be easily obtained by combining data obtained at different β [4], no fine
tuning is necessary in this case. In the following analysis, we mainly focus on the
curvature of the effective potential to identify the nature of the phase transition.

In the µ=0 case, with the formula in eq. (4) or (5), eq. (6) is calculated at arbitrary
values of β and small κh (or large mh). The contribution from the plaquette term
can be absorbed by a shift of β and the coefficients of improvements, i.e. β → β∗ ≡
β + 48(Nf − 2)κ4

h for the Wilson case. As seen in the above equations, the choice
of the action is not important. In the following, the mass dependence is discussed
through the parameter h.
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where 〈· · · 〉β denotes the ensemble average over two-flavor configurations generated
at β, ml and the vanishing µ. Since the ml dependence of the potential is not
discussed in the following, it is omitted from the arguments. Notice that eq.(??)
relates simulations at different β values. Thanks to this, by performing a number of
simulations at various β, we can study the potential in a wide range of P .

At a first order transition point, Veff shows, as a function of P , a double-well
structure, and in turn the curvature (or equivalently the second derivative) of the
potential d2Veff/d2P vanishes at two values of P . In general, to find the first order
phase transition by observing this behavior, a fine tuning of β is required. However,
since d2Veff/dP 2 does not depend on β and hence d2Veff/dP 2 over the wide range
of P can be easily obtained by combining data obtained at different β [4], no fine
tuning is necessary in this case. In the following analysis, we mainly focus on the
curvature of the effective potential to identify the nature of the phase transition.

In the µ=0 case, with the formula in eq. (4) or (5), eq. (6) is calculated at arbitrary
values of β and small κh (or large mh). Denoting h = 2Nf(2κh)Nt for the Wilson
quark action, or h = Nf/(4 × (2mh)Nt) for the staggered quark action, we obtain
ln R(P ; β,κh, 0; β0) = ln R̄(P ;κh, 0) + (plaquette term) + O(κNt+2

h ) with

R̄(P ;κh, 0) =

〈
δ(P − P̂ ) exp[6hN3

s Ω]
〉

β

〈δ(P ′ − P )〉β
.(7)

Notice that R̄(P ;κh, 0) does not depend on β. The contribution from the plaquette
term can be absorbed by a shift of β and the coefficients of improvements, i.e.
β → β∗ ≡ β + 48(Nf − 2)κ4

h for the Wilson case. As seen in the above equations,
the choice of the action is not important. In the following, the mass dependence is
discussed through the parameter h.

Numerical results. We use the two-flavor QCD configurations generated with p4-
improved staggered quarks and the standard plaquette gauge action in Ref. [9]. The
lattice size Nsite is 163×4. The data are obtained at sixteen values of β from β = 3.52
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where 〈· · · 〉β denotes the ensemble average over two-flavor configurations generated
at β, ml and the vanishing µ. Since the ml dependence of the potential is not
discussed in the following, it is omitted from the arguments. Notice that eq.(??)
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discussed in the following, it is omitted from the arguments. Notice that eq.(??)
relates simulations at different β values. Thanks to this, by performing a number of
simulations at various β, we can study the potential in a wide range of P .

At a first order transition point, Veff shows, as a function of P , a double-well
structure, and in turn the curvature (or equivalently the second derivative) of the
potential d2Veff/d2P vanishes at two values of P . In general, to find the first order
phase transition by observing this behavior, a fine tuning of β is required. However,
since d2Veff/dP 2 does not depend on β and hence d2Veff/dP 2 over the wide range
of P can be easily obtained by combining data obtained at different β [4], no fine
tuning is necessary in this case. In the following analysis, we mainly focus on the
curvature of the effective potential to identify the nature of the phase transition.
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quark action, or h = Nf/(4 × (2mh)Nt) for the staggered quark action, we obtain
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Notice that R̄(P ;κh, 0) does not depend on β. The contribution from the plaquette
term can be absorbed by a shift of β and the coefficients of improvements, i.e.
β → β∗ ≡ β + 48(Nf − 2)κ4

h for the Wilson case. As seen in the above equations,
the choice of the action is not important. In the following, the mass dependence is
discussed through the parameter h.

Numerical results. We use the two-flavor QCD configurations generated with p4-
improved staggered quarks and the standard plaquette gauge action in Ref. [9]. The
lattice size Nsite is 163×4. The data are obtained at sixteen values of β from β = 3.52
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Simulation Parameters:
Nf =2,
p4-improved staggered quark
the standard plaquette gauge
a ml = 0.1,
10,000-40,000 trajs.
V=163×4,
β = [3.52, 4.00] (16 values),
T/Tc = [0.76,1.98],
MPS/MV~0.7
[C.R. Allton, et al., PRD71,054508 (2005)]

Calculated with h = [0.01, 0.07]
‣lnR increases with h.
‣Rapid increase@P~0.81
⇒large curvature

Result: ln R
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Figure 1. ln R(P, h) as functions of the plaquette.
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Figure 2. The curvature of ln R̄(P, h) and d2Veff/dP 2(P, 0) as func-
tions of the plaquette.

Numerical results. We use the two-flavor QCD configurations generated with p4-
improved staggered quarks and the standard plaquette gauge action in Ref. [9]. The
lattice size Nsite is 163×4. The data are obtained at sixteen values of β from β = 3.52
to 4.00 with the bare quark mass ma = 0.1 fixed. The number of trajectories is 10,000
– 40,000, depending on β. The corresponding temperature normalized by the pseudo-
critical temperature is in the range of T/Tc = 0.76 to 1.98, and the pseudo-critical
point is about β = 3.65, where the ratio of pseudo-scalar and vector meson masses
is mPS/mV ≈ 0.7. All configurations are used for the analysis at zero density, while
the finite density analysis is performed every 10 trajectories. Further details on the
simulation parameters are given in Ref. [9]. The same data set is used to study the
phase structure of two-flavor QCD at finite density in Ref. [4].

For later use, we first calculate the potential in two-flavor QCD at zero density,
V0(P, β), the first term in eq. (??). Because the finite temperature transition is



1st term is calculate in two 
different ways (black and red).
Maximum of the 2nd term 
exceeds 1st term at P~0.81 for
h ≳ 0.06.
There ∂2Veff/∂P2 is negative.
⇒ 1st order phase transition

hc= 0.0614(69)

Result:
∂2Veff/∂P2=∂2V0/∂P2 − ∂2(ln R)/∂P2
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Numerical results. We use the two-flavor QCD configurations generated with p4-
improved staggered quarks and the standard plaquette gauge action in Ref. [9]. The
lattice size Nsite is 163×4. The data are obtained at sixteen values of β from β = 3.52
to 4.00 with the bare quark mass ma = 0.1 fixed. The number of trajectories is 10,000
– 40,000, depending on β. The corresponding temperature normalized by the pseudo-
critical temperature is in the range of T/Tc = 0.76 to 1.98, and the pseudo-critical
point is about β = 3.65, where the ratio of pseudo-scalar and vector meson masses
is mPS/mV ≈ 0.7. All configurations are used for the analysis at zero density, while
the finite density analysis is performed every 10 trajectories. Further details on the
simulation parameters are given in Ref. [9]. The same data set is used to study the
phase structure of two-flavor QCD at finite density in Ref. [4].

For later use, we first calculate the potential in two-flavor QCD at zero density,
V0(P, β), the first term in eq. (??). Because the finite temperature transition is



Comments
‣ hc = 0.0614(69) = 2 Nf (2Khc)Nt

‣Critical kappa Khc becomes small as Nf increases.
‣ For example, for Nf =10, Khc ~ 0.118.
‣Convergence of the HPE is studied in quenched theory in [Ejiri et al. 

in preparation], and found to be (LO)~(NLO) @Kh ~ 0.18.
‣ Study of phase structure at finite density can be done in the same 

footing. [S. Ejiri, PRD77, 014508 (2008)]

‣We found that a finite μ also makes Khc small.



Summary and outlooks

✓In general, QCD with many flavors is computationally 
demanding.

✓We proposed an easy method to explore the phase 
structure of MFQ, and determined the critical kappa 
(⇒upper limit for heavy flavors mass).

✓Future works:
- Quantify the strength of 1st order transition
- Check the universal power behavior at (or existence 

of) the tri-critical point


