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The nuclear EOS plays an important role for astrophysical studies. 

1. Lattimer-Swesty EOS : The compressible liquid drop model 

2. Shen EOS : The relativistic mean field theory 

      

 (NPA 535 (1991) 331) 

 (NPA 637 (1998) 435) 

1. Introduction 

There is no nuclear EOS based on the microscopic many-body theory. 

These EOSs are based on phenomenological models for uniform matter. 

・  G. Shen EOS : (PRC 83 (2010) 015806) 

・ M. Hempel EOS : (NPA 837 (2010) 210) 

・ S. Furusawa EOS : (APJ 738 (2011) 178) 

・ C. Ishizuka EOS : (J. Phys. G 35(2008)085201) 

・ K. Nakazato EOS : (PRD 77(2008) 103006) 

We aim at a new EOS for SN with the variational method. 

The aim of this study is 

To construct a new nuclear Equation of State (EOS) 

for supernova (SN) simulations 

based on the realistic nuclear force. 



EOS constructed with the Thomas-Fermi (TF) calculation 

Non-uniform Nuclear Matter 

EOS constructed with the cluster variational method 

Completion of a Nuclear EOS table for SN simulations 

Uniform Nuclear Matter 

Temperature T : 0 ≤ T ≤ 400 MeV 

Density r : 105.1 ≤ rm ≤ 1016.0g/cm3 

Proton fraction x : 0 ≤ x ≤ 0.65 66 point 

110 point 

92 point 

Our Plan to Construct the EOS for SN Simulations 

★We are here.★ 

1. EOS for non-uniform matter at zero temperature 

2. EOS for non-uniform matter at finite temperature 



2. EOS for Uniform Nuclear Matter 

Pts
: Spin-isospin projection operators 

The Nuclear Hamiltonian 

Two-body Hamiltonian Three-body Hamiltonian 

We assume the Jastrow wave function. 

the AV18 two-body nuclear potential 

FF: The Fermi-gas wave function 

at zero temperature 

fij : Correlation function 

the UIX three-body nuclear potential 

Spin-orbit Tensor Central 



Two-Body Energy 

rh 

E2/N is the expectation value of H2 with the Jastrow wave function 

in the two-body cluster approximation. 

r : Total nucleon number density  

rp : Proton number density  x = rp/r : Proton fraction 

E2/N is minimized with respect to fCts
(r), fTt

(r) and fSOt
(r)  

with the following two constraints.   

1. Extended Mayer’s condition 

2. Healing distance condition 

Fts
(r): Radial distribution functions 

FFts
(r): Fts

(r) for the degenerate Fermi gas 

ah is determined so that E2/N reproduces the results by 

APR(Akmal, Pandharipande and Ravenhall) 

Healing distance  

APR : PRC58(1998)1804 

Mean distance 

between nucleons 

ah : adjustable parameter 



Two Body Energy 

Our results are in good agreement with the results by 

APR (FHNC method). 

APR : PRC58(1998)1804 

ah = 1.76 



 Three-Body Energy 

Expectation value with the Fermi-gas wave function 

a,b,g,d : adjustable parameters 

UIX potential 

:2-pion exchange part 

:Repulsive part 

Correction term 

Three Body Energy  

Parameters of E3/N are determined so as to reproduce the empirical data. 

TF calculation for atomic nuclei reproduces the gross feature of 

the experimental data. 
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 Application to Neutron Star 

The NS mass-radius relation is consistent with 

observational data . 
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Free Energy at Finite Temperatures I 

 (Phys. Lett. 87B(1979) 11)  (A. Mukherjee et al., PRC 75(2007) 035802) 

: Approximate Internal Energy 

: Approximate Entropy 

Free Energy 

We follow the prescription proposed by Schmidt and Pandharipande. 

Approximate Internal Energy 

E2T/N :Two-body internal energy at finite temperatures 

chosen to be the same as at 0 MeV 

S0/N is expressed with the averaged 

occupation probabilities ni(k) 

Correlation function fij is chosen to be the same at 0MeV. 

Frozen-Correlation Approximation 



Free energies are minimized with respect to mp* and mn*  

Approximate Entropy 

mi*: Effective mass of nucleons 

(i = p, n) 

ei(k): Single particle energy 

i is determined with the normalization condition. 

The averaged occupation probability 

Free Energy at Finite Temperatures II 



AM : A. Mukherjee, PRC 79(2009) 045811 

Free Energy per Nucleon at Finite Temperatures 

Free energy per nucleon at T=20MeV Free energy per nucleon at T=30MeV 



Validity of the Frozen-Correlation Approximation 

Full minimization 

F/N is minimized with respect to 

fCts
(r), fTt

(r), fSOt
(r) and mi*  

with 

1.Extended Mayer’s condition 

and 

2. Healing distance condition. 

The free energies with the frozen-correlation approximation 

are in good agreement with those with the full minimization. 



Internal Energy and Entropy 

Internal energy at T=20MeV Entropy at T=20MeV 

Entropies are in good agreement with the approximate entropies. 

This variational calculation is Self Consistent. 



Pressure and Critical Temperature 

Pressure Critical temperature 

Critical Temperature TC is 

defined by 



Free energy in the Wigner-Seitz (WS) cell 

Nucleon density distribution a : Lattice constant 

F0 = 68.00 MeV fm5 

(i = p, n) 

Bulk energy Gradient energy 

Coulomb energy 

We follow the TF method by Shen et. al. 

f : Free energy density of uniform nuclear matter 

3. EOS for Non-uniform Nuclear Matter 
 (NPA637(1998)435) 

Parameter Minimum Maximum Number 

log10(T) [MeV] -1.24 1.40 23 + 1  

x 0.0 0.5 213 

r [fm-3] 0.000001 0.18 1980 

24×213×1980  

= 10121760 points 



TF Calculation for Atomic Nuclei 

⊿M = MTF-Mexp 
Mexp  : Experimental data 

MTF : Mass by the Thomas-Fermi calculation 

RMS deviation (for 2226 nuclei) 2.99 MeV 



Our results are in good agreement with  

the experimental data and the sophisticated atomic mass formula. 

TF Calculation for Atomic Nuclei 



Phase diagram of nuclear matter at T = 0MeV 

rB = 1014.23 g/cm3 

TF Calculation for Non-uniform Nuclear Matter 



Phase diagrams of nuclear matter at finite temperatures 

TF Calculation for Non-uniform Nuclear Matter 

F/Vcell is minimized with respect to ni
out, ni

in Ri, ti, a 

at given density and proton fraction. 



5. Summary 

• Construction of the EOS table for non-uniform matter 

• Contribution of the a-particle mixing 

Construction of the EOS for supernova simulations 

• The EOS for uniform nuclear matter is constructed  

     with the cluster variational method. (zero and finite temperatures) 

• The EOS for non-uniform nuclear matter is constructed  

in the Thomas-Fermi approximation. (zero and finite temperatures) 

Ongoing Calculations 

The obtained thermodynamic quantities are reasonable. 

Uniform nuclear matter 

Non-uniform nuclear matter 

Phase diagrams are reasonable at zero and finite temperatures.  

The validity of the frozen-correlation approximation is confirmed. 

This variational calculation is self consistent. 

RMS deviation for atomic nuclei is 2.99 MeV.  


