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B Finite temperature study of axial symmetry on the lattice
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See previous Lattice proceedings (10-11-12), article in prep.



Pattern of chiral symmetry breaking
at low temperature QCD

SU(Nf)V X SU(Nf)A X U(l)v X U(].)A —)SU(Nf)V X U(].)V 0

Symmetry of the Lagrangian

Symmetries in the real world (N/=3 ) at zero temperature

e U(1)y the baryon number conservation

e SU(3)y intact (softly broken by quark masses) — 8 Goldstone bosons (GB)

e SU(3)ais broken spontaneously by the non zero e.v. of the quark condensate
* No opposite parity GB, U(1) 4 is broken, but no 9th GB is found in nature.

Axial symmetry is not a symmetry of the quantum theory ('t Hooft - instantons)

8M]g () = 2iN¢q(x) topological charge density

Witten-Veneziano: mass splitting of the 7)'(958) from topological charge at large N.
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At finite temperature, .
in the chiral limit m, — 0, chiral symmetry is restored n D

e Phase transition at N/=2
e Crossover with 2+1 flavors

What is the fate of the axial U(1) 4 symmetry
at finite temperature T’z 1¢ ?

Complete restoration is not possible since it is an anomaly effect.
Exact restoration is expected only at infinite T (see instanton-gas models)
At most we can observe strong suppression

On the lattice the overlap Dirac operator is the best way to answer this questions
since it preserves the maximal amount of chiral symmetry.

An operator satisfying the Ginsparg-Wilson relation has several nice properties e.g.
* exact relations between eigenmodes (EM) and topological charge

e exact relation among hermitian-operator EM and the non-hermitian ones
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Check the effective restoration of axial U(1)4 symmetry by measuring
(spatial) meson correlators at finite temperature in full QCD with the Overlap
operator

Degeneracy of the correlators is the signal that we are looking for

0'(14 X 12) SU(Q)A 7'('(’1:’75 &) Ta)

U(l)Ai IU(l)A
n(ins ® 1) -2V 51, @ 79)

Dirac operator eigenvalue density is also a relevant observable for chiral symmetry

First of all there are some issues to solve before dealing with the real problem...



The sign function in the overlap operator gives . g
a delta in the force when Hy modes cross the boundary Q D
(i.e. topology changes).

In order to avoid expensive tricks to handle the zero modes of the

Hermitian Wilson operator JLQCD simulations use (JLQCD 2006):

 lwasaki action (suppresses Wilson operator near zero modes)

e Extra Wilson fermions and twisted mass ghosts to rule out the zero
modes

Topology is thus fixed throughout the HMC trajectory.

The effect of fixing topology is expected to be a Finite Size Effect
(actually O(1/V) ), next slides



Partition function at fixed topology

Zo = 5 _W 9 exp(—VF©)  F(0)=E®0)—i6Q/V &

where the ground state Eo(0) = Z Can p2n — &92 4 0(94)

energy can be expanded (2n)! 2

(T=0) n=1 0

Using saddle point expansion around 0, = iX % (1 + 0(52))
t

one obtains the Gaussian distribution
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From the previous partition function we can @

|
.-d n D
extract the relation between correlators at fixed 6 and 3 D

correlators at fixed Q) Q

In particular for the topological susceptibility and using the Axial Ward
|ldentity we obtain a relation involving fermionic quantities:

| 2
lim (mP(z)mP(0))5> = ‘i (?f — Xt — Q;jV) + O(e~m=121)

|z|—large

P(x) is the flavor singlet pseudo scalar density operator
Aoki et al. PRD76,054508 (2007)

What is the effect of fixing Q at finite temperature?
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Results ~ il UDn

v Simulation details
v Finite temperature quenched SU(3) at fixed topology (TEST CASE)
v Eigenvalues density distribution

v Topological susceptibility

BG/L
v Finite temperature two flavors QCD at fixed topology Hitachi SR16K

v Eigenvalues density distribution

v Meson correlators




Pure gauge (16°x6, 24°x6):
lwasaki action + top. fixing term
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285.7
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305.6
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347.6

0.36
0.93
0.97
0.992
1.0
1.01
1.02
1.06
1.10
1.20

Two ﬂavours !D (1

lwasaki + Overlap +

. s

O(300) trajectories per T
am=0.05, 0.025, 0.01

2.18
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2.45

0.1438
0.1391
0.12818
0.1183
0.1013
0.0940

171.5
177.3
192.2
208.5
243.5
262.4

0.95
0.985
1.06
1.15
1.35
1.45

Pion mass: ~290 MeV @ am=0.015, 5=2.30

T was conventionally fixed to 180, not relevant for
the results (but supported by Borsanyi et al. results)
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m (Spatial) Correlators are always approximated by the first 50
eigenvalues

® Pure gauge: double pole formula for disconnected diagram

B Q=0, assume c4s term is negligible, then check consistency

® Topological susceptibility estimated by a joint fit of connected and

disconnected contribution to maximize info from data
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Ilwasaki action (zero mode counting)
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If axial symmetry is
restored we can obtain

2.25 am = 0.01
-+~ 2.20am = 0.01
-4--  2.20 am = 0.025

[x p(Im AYV]™ (MeV)

2.20 am = 0.05 :

| - constraints  on the

ot [T spectral density

< 300} | Nl | <. . ,Om()\)
= T=210Mev | Hmasolimim0 =5 =0
Ezoo_.' i
= [ 2.40 am = 0.01
= - 2.30 am = 0.01 ]
100 - 230am=0025 -

[ 2.30 am = 0.05 ]

02 | | 1 Ref: S. Aoki, H. Fukaya, Y. Taniguchi
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for the analysis of spectral density and control on chirality VIOIatlo

e Realistic simulations are possible, but topology must be fixed

* A check of systematics due to topology fixing at finite temperature is necessary
(finite volume corrections expected)

* Pure gauge test results show that we can control these errors as in the previous
T=0 case.
Finite volume effects are small in the SU(3) case

Q
e With overlap fermions we have a clear theoretical setup Q
n terms.

e Full QCD spectrum shows a gap at high temperature even at pion masses ~250
MeV
e Statistics: high at T>200 MeV
 Finite volume effects (beside topology fixing): to be checked

» Correlators show degeneracy of all channels when mass is decreased

 Results support effective restoration of U(1)4 symmetry
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Thanks for your attention
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LuxRay Artistic Rendering of Lowest Eigenmode
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