
Large Nc gauge theory and Chiral 
Random Matrix Theory

Jong-Wan Lee

‘Quark to universe in computational science (QUCS 2012)’
 Nara, Japan,  Dec. 13-16, 2012

Collaborators: Masanori Hanada, Norikazu Yamada (in progress)

Institute of Particle and Nuclear Studies, KEK

1



2

In the large-Nc ‘t Hooft limit of QCD, the theory is greatly simplified 
(planarity) while sharing the same properties (asymptotic freedom, 
confinement, chiral symmetry breaking, ...) with QCD.

Consider SU(Nc) gauge theory

the large-Nc ‘t Hooft limit

Equivalent !
e.g. Wilson loop amplitudes

This is so called the Large-Nc volume equivalence. (Eguchi-Kawai 82’)
(Eguchi-Kawai equivalence)



Instead of considering the theory at infinite volume, in the ‘t Hooft 
large-Nc limit (thanks to Large-Nc volume equivalence) we study
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Question: In SU(Nc) gauge theory with Nf=2 adj. fermions 
at infinite V, the chiral symmetry is broken or not?

SU(Nc) gauge theory with 
Nf=2 adj. fermions at small V 

(=24 in our simulation)

The breakdown of the chiral symmetry can be detected by using  
the Chiral Random Matrix Theory (chRMT).

✤ SU(2) with Nf=2 adjoint fermions - candidate 
of the Minimal Walking Technicolor m0del

☛



However, single-site Eguchi-Kawai volume reduction Fails

Prescriptions in early 80’s
Quenched EK Twisted EK

Partial reduction (aL>1fm) Kiskis, Narayanan, Neuberger (2003)

Large Nc Volume Independence (80’s)

Bhanot, Heller & Neuberger 82

• Qualitatively: Small L ⇔ High T ⇒ deconfinement ⇒ tr(Uµ) 6= 0

• Can understand in weak coupling limit as due to clustering of 
eigenvalues of Uµ [BHN ’82, Kazakov & Migdal ’82]
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➡ Eigenvalues attract for d>2  ⇒ tr Uµ �= 0✓aµ = ✓bµ and so

• For reduction to hold need uniform distribution of eigenvalues, 
uncorrelated in different directions

• Role of momenta played by ✓aµ � ✓bµBhanot, Heller & Neuberger 82

Brigoltz & Sharpe 2008

Gonzales-Arroyo & Okawa 83

Fails
Teper & Vairinhos 2007
Azeyanagi et al 2008
Bietenholtz et al 2007
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In 1982, Eguchi and Kawai proposed that large volume SU(Nc) gauge 
theory is identical to a single-site reduced matrix model in the large Nc 
limit if certain conditions are satisfied. The most crucial condition is the 
unbroken center symmetry.

Revival (2007 ~ ) - center symmetry restoration 

Deformed EK Unsal & Yaffe (2008)

Modified  TEK Gonzales-Arryo & Okawa (2010)

Adjoint EK (AEK) Kovtun, Unsal, & Yaffe (2007)



• Perturbative analysis

Bringoltz, Sharpe, 2009
Bringoltz, Koren, Sharpe, 2011

Adjoint Eguchi-Kawai model (AEK)

Kovtun, Unsal & Yaffe 2007/2010

            fermions in adjoint representation with periodic boundary conditions

stabilized center symmetry

single-site EK with Nf=1,2 adj. fermions

(ZNc)4 center symmetry is unbroken 
even at weak coupling & heavy fermions

The relevant symmetries of ZAEK are the same as those
of the original EK model. They are the remnant of the
gauge symmetry

8 !: U! ! !U!!
y with ! 2 SUðNÞ; (3.5)

as well as center transformations applied independently to
the four link matrices

U! ! U!z
n! with z ¼ e2"i=N and n! 2 ZN:

(3.6)

As explained in Sec. I, large-N equivalence holds as
long as the ðZNÞ4 symmetry in Eq. (3.6) is unbroken. We
recall here how this equivalence works in detail. This
equivalence states that appropriate expectation values in
the reduced theory become identical whenN ! 1 to those
in the infinite-volume theory defined by Eq. (2.1).
Appropriate expectation values in the large-volume theory
are the connected correlators of ðZNÞ4-invariant and
translation-invariant operators. These are mapped into op-
erators in the reduced theory following the prescription of
Refs. [2,6]. For example, consider the large-volume expec-
tation value of the plaquette,
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The notation h; iZadj
means that we calculate expectation

values in the ensemble defined by the partition function in
Eq. (2.1). NP is the number of plaquettes, which in four
dimensions is equal to 6L4. The corresponding single-site
expectation value is
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(3.8)

so that, in fact,

ured ¼ uðL ¼ 1Þ: (3.9)

The meaning of volume reduction is that

uðb;$Þ ¼ uredðb;$Þ (3.10)

when N ! 1 in both theories.
Our aim in this paper is to find the regions of the b% $

plane in which the ground state of the single-site model is
invariant under the ðZNÞ4 center symmetry, so that equiv-
alences of the form of Eq. (3.10) hold. We first collect what
is known about the single-site theory, together with some
conjectures, into a phase diagram.

For infinitely massive fermions (i.e. for $ ¼ 0), our
theory becomes the original EK model. This is known to
break the ðZNÞ4 symmetry for b > bEK & 0:19 and numeri-
cal evidence suggests that the transition is first order

[8,10,42]. A crucial issue is then whether, for b > bEK,
an increase in $ can lead to the restoration of the center
symmetry. This is what one would expect based on the
results of Refs. [6,14]. Specifically, Ref. [14] studied a
lattice theory similar to Eq. (3.1) but in which only one
of the Euclidean dimensions is reduced to a point. This
weak-coupling calculation found that, for the Nf ¼ 1 the-
ory, the center symmetry is broken for $ ¼ 0, but restored
once $ * 0:04. There is, in addition, a small intermediate
phase between the two in which the ZN symmetry is broken
down to a Z2 subgroup. Finally, when $ grows even more,
to values above '1:4, the ZN symmetry is completely
broken again.
It is unclear how the fact that in the current paper we

study a theory where all lattice directions are reduced to a
point changes the results of Ref. [14]. Nevertheless, assum-
ing that the results of Ref. [14] provide a qualitative guide,
we are led to conjecture the phase diagram shown in Fig. 2.
In the following we describe the features of this diagram.
First, consider the solid (black) line which begins at

bEK ' 0:19 on the b axis, bends up, and ends on the top
of the diagram. Our conjecture is that this separates a
center symmetry-broken phase to the left (shown shaded)
from an unbroken phase to the right. This is based on what
we know about the EK model, and the assumption that the
results of Ref. [14] apply qualitatively to our model. (Note
that there can only be a phase transition when N ! 1,
while for finite N this will be smoothed out into a cross-
over.) It is possible that this line actually has a nonzero
width and contains intermediate partially broken phases.4
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FIG. 2 (color online). Conjectured phase diagram for the
single-site model in the large-N limit. Details are discussed in
the text.

4For example, this was seen in Ref. [42] at $ ¼ 0.
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Original EK 

quarks are light 
along the line.

Continuum
physics

strong-coupling/
latticy physics

The first one-site simulations  of QCD(adj) by Bringoltz+S.Sharpe,0906.3538. 
Inspirational, for both analytic and numerical studies. 

Related one-site simulations:
Hanada, Azeyanagi,MU, 
Yacoby, 2010

Overlap fermions, b~5: 
Narayanan, Hiatanen, 2009.

Nf=2 Dirac  
Galvez, Catterall, MU 
Bringoltz, Sharpe, Koren 2011
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Azeyanagi, Hanada, Unsal, Yacoby. 2010

1-loop effective potential for 
Wilson lines is repulsive

• Numerical simulations

non-perturbative study of pure 
SU(Nc) gauge theory

Bringoltz, Sharpe, 2009
Bringoltz, Koren, Sharpe, 2011

Adjoint Eguchi-Kawai model (AEK)

Kovtun, Unsal & Yaffe 2007/2010

            fermions in adjoint representation with periodic boundary conditions

stabilized center symmetry

single-site EK with Nf=1,2 adj. fermions
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even at weak coupling & heavy fermions

The relevant symmetries of ZAEK are the same as those
of the original EK model. They are the remnant of the
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8 !: U! ! !U!!
y with ! 2 SUðNÞ; (3.5)

as well as center transformations applied independently to
the four link matrices

U! ! U!z
n! with z ¼ e2"i=N and n! 2 ZN:

(3.6)

As explained in Sec. I, large-N equivalence holds as
long as the ðZNÞ4 symmetry in Eq. (3.6) is unbroken. We
recall here how this equivalence works in detail. This
equivalence states that appropriate expectation values in
the reduced theory become identical whenN ! 1 to those
in the infinite-volume theory defined by Eq. (2.1).
Appropriate expectation values in the large-volume theory
are the connected correlators of ðZNÞ4-invariant and
translation-invariant operators. These are mapped into op-
erators in the reduced theory following the prescription of
Refs. [2,6]. For example, consider the large-volume expec-
tation value of the plaquette,
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so that, in fact,

ured ¼ uðL ¼ 1Þ: (3.9)

The meaning of volume reduction is that

uðb;$Þ ¼ uredðb;$Þ (3.10)

when N ! 1 in both theories.
Our aim in this paper is to find the regions of the b% $

plane in which the ground state of the single-site model is
invariant under the ðZNÞ4 center symmetry, so that equiv-
alences of the form of Eq. (3.10) hold. We first collect what
is known about the single-site theory, together with some
conjectures, into a phase diagram.

For infinitely massive fermions (i.e. for $ ¼ 0), our
theory becomes the original EK model. This is known to
break the ðZNÞ4 symmetry for b > bEK & 0:19 and numeri-
cal evidence suggests that the transition is first order

[8,10,42]. A crucial issue is then whether, for b > bEK,
an increase in $ can lead to the restoration of the center
symmetry. This is what one would expect based on the
results of Refs. [6,14]. Specifically, Ref. [14] studied a
lattice theory similar to Eq. (3.1) but in which only one
of the Euclidean dimensions is reduced to a point. This
weak-coupling calculation found that, for the Nf ¼ 1 the-
ory, the center symmetry is broken for $ ¼ 0, but restored
once $ * 0:04. There is, in addition, a small intermediate
phase between the two in which the ZN symmetry is broken
down to a Z2 subgroup. Finally, when $ grows even more,
to values above '1:4, the ZN symmetry is completely
broken again.
It is unclear how the fact that in the current paper we

study a theory where all lattice directions are reduced to a
point changes the results of Ref. [14]. Nevertheless, assum-
ing that the results of Ref. [14] provide a qualitative guide,
we are led to conjecture the phase diagram shown in Fig. 2.
In the following we describe the features of this diagram.
First, consider the solid (black) line which begins at

bEK ' 0:19 on the b axis, bends up, and ends on the top
of the diagram. Our conjecture is that this separates a
center symmetry-broken phase to the left (shown shaded)
from an unbroken phase to the right. This is based on what
we know about the EK model, and the assumption that the
results of Ref. [14] apply qualitatively to our model. (Note
that there can only be a phase transition when N ! 1,
while for finite N this will be smoothed out into a cross-
over.) It is possible that this line actually has a nonzero
width and contains intermediate partially broken phases.4
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the text.

4For example, this was seen in Ref. [42] at $ ¼ 0.
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Azeyanagi, Hanada, Unsal, Yacoby. 2010

1-loop effective potential for 

Wilson lines is repulsive

Bringoltz, Sharpe  2009
Bringoltz, Koren, Sharpe 2011

Revival of Large Nc Volume Reduction (2007~)

Kovtun, Unsal,  Yaffe 2007/2010

            fermions in adjoint rep. with periodic boundary conditions
stabilized center symmetry

single-site EK with Nf=1,2 adj. fermions

(ZN)4 center symmetry is unbroken even 
at weak coupling & heavy fermions

The relevant symmetries of ZAEK are the same as those
of the original EK model. They are the remnant of the
gauge symmetry

8 !: U! ! !U!!
y with ! 2 SUðNÞ; (3.5)

as well as center transformations applied independently to
the four link matrices

U! ! U!z
n! with z ¼ e2"i=N and n! 2 ZN:

(3.6)

As explained in Sec. I, large-N equivalence holds as
long as the ðZNÞ4 symmetry in Eq. (3.6) is unbroken. We
recall here how this equivalence works in detail. This
equivalence states that appropriate expectation values in
the reduced theory become identical whenN ! 1 to those
in the infinite-volume theory defined by Eq. (2.1).
Appropriate expectation values in the large-volume theory
are the connected correlators of ðZNÞ4-invariant and
translation-invariant operators. These are mapped into op-
erators in the reduced theory following the prescription of
Refs. [2,6]. For example, consider the large-volume expec-
tation value of the plaquette,
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so that, in fact,

ured ¼ uðL ¼ 1Þ: (3.9)

The meaning of volume reduction is that

uðb;$Þ ¼ uredðb;$Þ (3.10)

when N ! 1 in both theories.
Our aim in this paper is to find the regions of the b% $

plane in which the ground state of the single-site model is
invariant under the ðZNÞ4 center symmetry, so that equiv-
alences of the form of Eq. (3.10) hold. We first collect what
is known about the single-site theory, together with some
conjectures, into a phase diagram.

For infinitely massive fermions (i.e. for $ ¼ 0), our
theory becomes the original EK model. This is known to
break the ðZNÞ4 symmetry for b > bEK & 0:19 and numeri-
cal evidence suggests that the transition is first order

[8,10,42]. A crucial issue is then whether, for b > bEK,
an increase in $ can lead to the restoration of the center
symmetry. This is what one would expect based on the
results of Refs. [6,14]. Specifically, Ref. [14] studied a
lattice theory similar to Eq. (3.1) but in which only one
of the Euclidean dimensions is reduced to a point. This
weak-coupling calculation found that, for the Nf ¼ 1 the-
ory, the center symmetry is broken for $ ¼ 0, but restored
once $ * 0:04. There is, in addition, a small intermediate
phase between the two in which the ZN symmetry is broken
down to a Z2 subgroup. Finally, when $ grows even more,
to values above '1:4, the ZN symmetry is completely
broken again.
It is unclear how the fact that in the current paper we

study a theory where all lattice directions are reduced to a
point changes the results of Ref. [14]. Nevertheless, assum-
ing that the results of Ref. [14] provide a qualitative guide,
we are led to conjecture the phase diagram shown in Fig. 2.
In the following we describe the features of this diagram.
First, consider the solid (black) line which begins at

bEK ' 0:19 on the b axis, bends up, and ends on the top
of the diagram. Our conjecture is that this separates a
center symmetry-broken phase to the left (shown shaded)
from an unbroken phase to the right. This is based on what
we know about the EK model, and the assumption that the
results of Ref. [14] apply qualitatively to our model. (Note
that there can only be a phase transition when N ! 1,
while for finite N this will be smoothed out into a cross-
over.) It is possible that this line actually has a nonzero
width and contains intermediate partially broken phases.4
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Azeyanagi, Hanada, Unsal, Yacoby 2010

1-loop effective potential 
is repulsive

non-perturbative study of pure 
SU(N) gauge theory

Gonzales-Arroyo & OkawaUnsal & Yaffe
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of the original EK model. They are the remnant of the
gauge symmetry

8 !: U! ! !U!!
y with ! 2 SUðNÞ; (3.5)

as well as center transformations applied independently to
the four link matrices

U! ! U!z
n! with z ¼ e2"i=N and n! 2 ZN:

(3.6)

As explained in Sec. I, large-N equivalence holds as
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Appropriate expectation values in the large-volume theory
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The meaning of volume reduction is that
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when N ! 1 in both theories.
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alences of the form of Eq. (3.10) hold. We first collect what
is known about the single-site theory, together with some
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For infinitely massive fermions (i.e. for $ ¼ 0), our
theory becomes the original EK model. This is known to
break the ðZNÞ4 symmetry for b > bEK & 0:19 and numeri-
cal evidence suggests that the transition is first order

[8,10,42]. A crucial issue is then whether, for b > bEK,
an increase in $ can lead to the restoration of the center
symmetry. This is what one would expect based on the
results of Refs. [6,14]. Specifically, Ref. [14] studied a
lattice theory similar to Eq. (3.1) but in which only one
of the Euclidean dimensions is reduced to a point. This
weak-coupling calculation found that, for the Nf ¼ 1 the-
ory, the center symmetry is broken for $ ¼ 0, but restored
once $ * 0:04. There is, in addition, a small intermediate
phase between the two in which the ZN symmetry is broken
down to a Z2 subgroup. Finally, when $ grows even more,
to values above '1:4, the ZN symmetry is completely
broken again.
It is unclear how the fact that in the current paper we

study a theory where all lattice directions are reduced to a
point changes the results of Ref. [14]. Nevertheless, assum-
ing that the results of Ref. [14] provide a qualitative guide,
we are led to conjecture the phase diagram shown in Fig. 2.
In the following we describe the features of this diagram.
First, consider the solid (black) line which begins at

bEK ' 0:19 on the b axis, bends up, and ends on the top
of the diagram. Our conjecture is that this separates a
center symmetry-broken phase to the left (shown shaded)
from an unbroken phase to the right. This is based on what
we know about the EK model, and the assumption that the
results of Ref. [14] apply qualitatively to our model. (Note
that there can only be a phase transition when N ! 1,
while for finite N this will be smoothed out into a cross-
over.) It is possible that this line actually has a nonzero
width and contains intermediate partially broken phases.4
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theory becomes the original EK model. This is known to
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[8,10,42]. A crucial issue is then whether, for b > bEK,
an increase in $ can lead to the restoration of the center
symmetry. This is what one would expect based on the
results of Refs. [6,14]. Specifically, Ref. [14] studied a
lattice theory similar to Eq. (3.1) but in which only one
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weak-coupling calculation found that, for the Nf ¼ 1 the-
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once $ * 0:04. There is, in addition, a small intermediate
phase between the two in which the ZN symmetry is broken
down to a Z2 subgroup. Finally, when $ grows even more,
to values above '1:4, the ZN symmetry is completely
broken again.
It is unclear how the fact that in the current paper we

study a theory where all lattice directions are reduced to a
point changes the results of Ref. [14]. Nevertheless, assum-
ing that the results of Ref. [14] provide a qualitative guide,
we are led to conjecture the phase diagram shown in Fig. 2.
In the following we describe the features of this diagram.
First, consider the solid (black) line which begins at

bEK ' 0:19 on the b axis, bends up, and ends on the top
of the diagram. Our conjecture is that this separates a
center symmetry-broken phase to the left (shown shaded)
from an unbroken phase to the right. This is based on what
we know about the EK model, and the assumption that the
results of Ref. [14] apply qualitatively to our model. (Note
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The relevant symmetries of ZAEK are the same as those
of the original EK model. They are the remnant of the
gauge symmetry

8 !: U! ! !U!!
y with ! 2 SUðNÞ; (3.5)

as well as center transformations applied independently to
the four link matrices

U! ! U!z
n! with z ¼ e2"i=N and n! 2 ZN:

(3.6)

As explained in Sec. I, large-N equivalence holds as
long as the ðZNÞ4 symmetry in Eq. (3.6) is unbroken. We
recall here how this equivalence works in detail. This
equivalence states that appropriate expectation values in
the reduced theory become identical whenN ! 1 to those
in the infinite-volume theory defined by Eq. (2.1).
Appropriate expectation values in the large-volume theory
are the connected correlators of ðZNÞ4-invariant and
translation-invariant operators. These are mapped into op-
erators in the reduced theory following the prescription of
Refs. [2,6]. For example, consider the large-volume expec-
tation value of the plaquette,

u $ 1

N

1

NP

X

P

htrUPiZadj
: (3.7)

The notation h; iZadj
means that we calculate expectation

values in the ensemble defined by the partition function in
Eq. (2.1). NP is the number of plaquettes, which in four
dimensions is equal to 6L4. The corresponding single-site
expectation value is

ured $
1

N

1

6

X

!<#

htrU!U#U
y
!U

y
# iZAEK

(3.8)

so that, in fact,

ured ¼ uðL ¼ 1Þ: (3.9)

The meaning of volume reduction is that

uðb;$Þ ¼ uredðb;$Þ (3.10)

when N ! 1 in both theories.
Our aim in this paper is to find the regions of the b% $

plane in which the ground state of the single-site model is
invariant under the ðZNÞ4 center symmetry, so that equiv-
alences of the form of Eq. (3.10) hold. We first collect what
is known about the single-site theory, together with some
conjectures, into a phase diagram.

For infinitely massive fermions (i.e. for $ ¼ 0), our
theory becomes the original EK model. This is known to
break the ðZNÞ4 symmetry for b > bEK & 0:19 and numeri-
cal evidence suggests that the transition is first order

[8,10,42]. A crucial issue is then whether, for b > bEK,
an increase in $ can lead to the restoration of the center
symmetry. This is what one would expect based on the
results of Refs. [6,14]. Specifically, Ref. [14] studied a
lattice theory similar to Eq. (3.1) but in which only one
of the Euclidean dimensions is reduced to a point. This
weak-coupling calculation found that, for the Nf ¼ 1 the-
ory, the center symmetry is broken for $ ¼ 0, but restored
once $ * 0:04. There is, in addition, a small intermediate
phase between the two in which the ZN symmetry is broken
down to a Z2 subgroup. Finally, when $ grows even more,
to values above '1:4, the ZN symmetry is completely
broken again.
It is unclear how the fact that in the current paper we

study a theory where all lattice directions are reduced to a
point changes the results of Ref. [14]. Nevertheless, assum-
ing that the results of Ref. [14] provide a qualitative guide,
we are led to conjecture the phase diagram shown in Fig. 2.
In the following we describe the features of this diagram.
First, consider the solid (black) line which begins at

bEK ' 0:19 on the b axis, bends up, and ends on the top
of the diagram. Our conjecture is that this separates a
center symmetry-broken phase to the left (shown shaded)
from an unbroken phase to the right. This is based on what
we know about the EK model, and the assumption that the
results of Ref. [14] apply qualitatively to our model. (Note
that there can only be a phase transition when N ! 1,
while for finite N this will be smoothed out into a cross-
over.) It is possible that this line actually has a nonzero
width and contains intermediate partially broken phases.4
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equivalence states that appropriate expectation values in
the reduced theory become identical whenN ! 1 to those
in the infinite-volume theory defined by Eq. (2.1).
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are the connected correlators of ðZNÞ4-invariant and
translation-invariant operators. These are mapped into op-
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so that, in fact,
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The meaning of volume reduction is that
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when N ! 1 in both theories.
Our aim in this paper is to find the regions of the b% $

plane in which the ground state of the single-site model is
invariant under the ðZNÞ4 center symmetry, so that equiv-
alences of the form of Eq. (3.10) hold. We first collect what
is known about the single-site theory, together with some
conjectures, into a phase diagram.

For infinitely massive fermions (i.e. for $ ¼ 0), our
theory becomes the original EK model. This is known to
break the ðZNÞ4 symmetry for b > bEK & 0:19 and numeri-
cal evidence suggests that the transition is first order

[8,10,42]. A crucial issue is then whether, for b > bEK,
an increase in $ can lead to the restoration of the center
symmetry. This is what one would expect based on the
results of Refs. [6,14]. Specifically, Ref. [14] studied a
lattice theory similar to Eq. (3.1) but in which only one
of the Euclidean dimensions is reduced to a point. This
weak-coupling calculation found that, for the Nf ¼ 1 the-
ory, the center symmetry is broken for $ ¼ 0, but restored
once $ * 0:04. There is, in addition, a small intermediate
phase between the two in which the ZN symmetry is broken
down to a Z2 subgroup. Finally, when $ grows even more,
to values above '1:4, the ZN symmetry is completely
broken again.
It is unclear how the fact that in the current paper we

study a theory where all lattice directions are reduced to a
point changes the results of Ref. [14]. Nevertheless, assum-
ing that the results of Ref. [14] provide a qualitative guide,
we are led to conjecture the phase diagram shown in Fig. 2.
In the following we describe the features of this diagram.
First, consider the solid (black) line which begins at

bEK ' 0:19 on the b axis, bends up, and ends on the top
of the diagram. Our conjecture is that this separates a
center symmetry-broken phase to the left (shown shaded)
from an unbroken phase to the right. This is based on what
we know about the EK model, and the assumption that the
results of Ref. [14] apply qualitatively to our model. (Note
that there can only be a phase transition when N ! 1,
while for finite N this will be smoothed out into a cross-
over.) It is possible that this line actually has a nonzero
width and contains intermediate partially broken phases.4

(Ζ  )Ν
4

b

0.125

0
0

0.25

??

?

κ

κc(b)

oo

b
bulk

? ?

~0.19

(Ζ  )Ν
4

(Ζ  )Ν
4

FIG. 2 (color online). Conjectured phase diagram for the
single-site model in the large-N limit. Details are discussed in
the text.

4For example, this was seen in Ref. [42] at $ ¼ 0.

BARAK BRINGOLTZ AND STEPHEN R. SHARPE PHYSICAL REVIEW D 80, 065031 (2009)

065031-6

!!""#
"

$

b

0.125

0

0

0.25

??

?

#

#c(b)

oo

b
bulk

? ?

~0.19

!!""#
"

$

!!""#
"

$

Phase diagram for one site!model

b = 1/�lat

� =
1

8 + 2am0

Original EK 

quarks are light 
along the line.

Continuum
physics

strong!coupling/
latticy physics

The "rst one!site simulations  of QCD#adj$ by Bringoltz+S.Sharpe,0906.3538. 
Inspirational, for both analytic and numerical studies. 

Related one!site simulations:
Hanada, Azeyanagi,MU, 
Yacoby, 2010

Overlap fermions, b%5: 
Narayanan, Hiatanen, 2009.

Nf=2 Dirac  
Galvez, Catterall, MU 
Bringoltz, Sharpe, Koren 2011

19Monday, July 11, 2011

!!""#
"

$

b

0.125

0

0

0.25

??

?

#

#c(b)

oo

b
bulk

? ?

~0.19

!!""#
"

$

!!""#
"

$

Phase diagram for one site!model

b = 1/�lat

� =
1

8 + 2am0

Original EK 

quarks are light 
along the line.

Continuum
physics

strong!coupling/
latticy physics

The "rst one!site simulations  of QCD#adj$ by Bringoltz+S.Sharpe,0906.3538. 
Inspirational, for both analytic and numerical studies. 

Related one!site simulations:
Hanada, Azeyanagi,MU, 
Yacoby, 2010

Overlap fermions, b%5: 
Narayanan, Hiatanen, 2009.

Nf=2 Dirac  
Galvez, Catterall, MU 
Bringoltz, Sharpe, Koren 2011

19Monday, July 11, 2011

3

Azeyanagi, Hanada, Unsal, Yacoby 2010

1-loop effective potential 
is repulsive

non-perturbative study of pure 
SU(N) gauge theory

Gonzales-Arroyo & OkawaUnsal & Yaffe

⇤k ⇥
N

8
(22)

⌃⇧̄⇧⌥ ⇤ N2 (23)

z (24)

⌅(z) (25)

� ⇧= 0 (26)

Sg = 2N2b
↵

n

↵

µ<�

�
1� 1

N
ReTrPµ�(n)

⇥
, (27)

Sf =
2↵

j=1

↵

n

⇧n,j

⇤

 1� ⇥

⇧

⌥
4↵

µ=1

(1� �µ)U
adj
n,µ⇧n+µ,j + (1 + �µ)U

†,adj
n�µ,µ⇧n�µ,j

⌃

�

⌅

⌦ . (28)

Zreduced =

�
DUD⇧D⇧ exp (Sg + Sf ) , n ⌅ 24 (29)

⇥ =
1

2(ma+ 4)
, m ⇤ O

�
1

a

⇥
(30)

m ⇤ O(1/a) (31)

8 Conclusion

Acknowledgements

The authors would like to thank *** for stimulating discussions and comments.
The numerical computations used in this work were carried out on cluster at KEK.

10

non-perturbative study of pure 
SU(Nc) gauge theory

h⇤i = h⇤1i+ C1(NV )�1 + C2N
�2 + · · · (27)

�
k

⇥ N

8
(28)

h ̄ i ⇠ N2
c

(29)

z (30)

⇢(z) (31)

⌃ 6= 0 (32)

S
g

= 2N2b
X

n

X

µ<⌫

✓
1� 1

N
ReTrP

µ⌫

(n)

◆
, (33)

S
f

=
2X

j=1

X

n

 
n,j

0

@1� 

2

4
4X

µ=1

(1� �
µ

)Uadj

n,µ

 
n+µ,j

+ (1 + �
µ

)U †,adj
n�µ,µ

 
n�µ,j

3

5

1

A . (34)

Z
reduced

=

Z
DUD D exp (S

g

+ S
f

) , n 2 24 (35)

 =
1

2(ma+ 4)
, m ⇠ O

✓
1

a

◆
(36)

m0 ⇠ O(1/a) (37)

8 Conclusion

Acknowledgements

The authors would like to thank *** for stimulating discussions and comments.
The numerical computations used in this work were carried out on cluster at KEK.

11



Chiral Random Matrix Theory (chRMT)

chRMT provides equivalent descriptions of the low-energy limit of 
QCD-like theories if the chiral symmetry is spontaneously broken.

6

P1: FDS/LRV P2: FQP

September 14, 2000 20:48 Annual Reviews AR115-09

CHIRAL RANDOMMATRIX THEORY 359

3. CHIRAL RANDOM MATRIX THEORY

3.1 Introduction of the Model

In this sectionwe introduce a chiral randommatrix theory (chRMT)with the global
symmetries of the QCDDirac operator. In the spirit of the invariant randommatrix
ensembles, we construct a model with eigenfunctions distributed uniformly over
the unitary unit sphere. This is achieved by choosing Gaussian-distributed random
matrix elements. We thus arrive at the following chRMT (20, 24):

ZβN f ,ν
(m1, . . . ,mN f ) =

∫
DW

N f∏

f=1
det(D + m f )e− Nβ

4 Trv(W†W ), 28.

where β is the Dyson index,

D =
(

0
iW †

iW
0

)
, 29.

andW is an n ×m matrix with ν = m − n and N = n +m. The interpretation of
this model is that N low-lying modes interact via a random interaction. A natural
representation of this model is in the form of gauge field configurations given
by a liquid of instantons. Then the low-lying modes are the zero modes of each
instanton. We assume that ν does not exceed

√
N so that, to a good approximation,

n = N/2 for large N. The parameter N is identified as the dimensionless volume
of spacetime. For the formulation of this model with explicit factors of N/V
included, see Reference 31. The potential v is defined by

v(φ) =
∑

k≥1
akφk . 30.

The simplest case is the Gaussian case, where v(φ) = $2φ. It can be shown
(see Section 3.5) that the microscopic spectral density does not depend on the
higher-order terms in this potential provided that the average spectral density near
zero remains nonzero. The matrix elements of W are either real [β = 1, chiral
Gaussian Orthogonal Ensemble (chGOE)], complex [β = 2, chiral Gaussian Uni-
tary Ensemble (chGUE)], or quaternion real [β = 4, chiral Gaussian Symplectic
Ensemble (chGSE)]. In the latter case, the eigenvalues ofD are doubly degenerate,
and the use of Majorana fermions is implemented by replacing the determinant
by its square root. For a non-Gaussian potential v(φ), we omit the G in the ab-
breviations and use chOE, chUE, and chSE, respectively. Two earlier attempts to
describe QCDDirac eigenvalues used the Wigner-Dyson ensembles instead of the
above chiral ensembles (32).
This model reproduces the following symmetries of the QCD partition func-

tion:
! The UA(1) symmetry. All eigenvalues of the random matrix Dirac operator
occur in pairs ±iλn or are zero.
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representation of this model is in the form of gauge field configurations given
by a liquid of instantons. Then the low-lying modes are the zero modes of each
instanton. We assume that ν does not exceed

√
N so that, to a good approximation,

n = N/2 for large N. The parameter N is identified as the dimensionless volume
of spacetime. For the formulation of this model with explicit factors of N/V
included, see Reference 31. The potential v is defined by

v(φ) =
∑

k≥1
akφk . 30.

The simplest case is the Gaussian case, where v(φ) = $2φ. It can be shown
(see Section 3.5) that the microscopic spectral density does not depend on the
higher-order terms in this potential provided that the average spectral density near
zero remains nonzero. The matrix elements of W are either real [β = 1, chiral
Gaussian Orthogonal Ensemble (chGOE)], complex [β = 2, chiral Gaussian Uni-
tary Ensemble (chGUE)], or quaternion real [β = 4, chiral Gaussian Symplectic
Ensemble (chGSE)]. In the latter case, the eigenvalues ofD are doubly degenerate,
and the use of Majorana fermions is implemented by replacing the determinant
by its square root. For a non-Gaussian potential v(φ), we omit the G in the ab-
breviations and use chOE, chUE, and chSE, respectively. Two earlier attempts to
describe QCDDirac eigenvalues used the Wigner-Dyson ensembles instead of the
above chiral ensembles (32).
This model reproduces the following symmetries of the QCD partition func-

tion:
! The UA(1) symmetry. All eigenvalues of the random matrix Dirac operator
occur in pairs ±iλn or are zero.
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andW is an n ×m matrix with ν = m − n and N = n +m. The interpretation of
this model is that N low-lying modes interact via a random interaction. A natural
representation of this model is in the form of gauge field configurations given
by a liquid of instantons. Then the low-lying modes are the zero modes of each
instanton. We assume that ν does not exceed
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N so that, to a good approximation,
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The simplest case is the Gaussian case, where v(φ) = $2φ. It can be shown
(see Section 3.5) that the microscopic spectral density does not depend on the
higher-order terms in this potential provided that the average spectral density near
zero remains nonzero. The matrix elements of W are either real [β = 1, chiral
Gaussian Orthogonal Ensemble (chGOE)], complex [β = 2, chiral Gaussian Uni-
tary Ensemble (chGUE)], or quaternion real [β = 4, chiral Gaussian Symplectic
Ensemble (chGSE)]. In the latter case, the eigenvalues ofD are doubly degenerate,
and the use of Majorana fermions is implemented by replacing the determinant
by its square root. For a non-Gaussian potential v(φ), we omit the G in the ab-
breviations and use chOE, chUE, and chSE, respectively. Two earlier attempts to
describe QCDDirac eigenvalues used the Wigner-Dyson ensembles instead of the
above chiral ensembles (32).
This model reproduces the following symmetries of the QCD partition func-
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where β is the Dyson index,

D =
(

0
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0
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, 29.

andW is an n ×m matrix with ν = m − n and N = n +m. The interpretation of
this model is that N low-lying modes interact via a random interaction. A natural
representation of this model is in the form of gauge field configurations given
by a liquid of instantons. Then the low-lying modes are the zero modes of each
instanton. We assume that ν does not exceed

√
N so that, to a good approximation,

n = N/2 for large N. The parameter N is identified as the dimensionless volume
of spacetime. For the formulation of this model with explicit factors of N/V
included, see Reference 31. The potential v is defined by

v(φ) =
∑

k≥1
akφk . 30.

The simplest case is the Gaussian case, where v(φ) = $2φ. It can be shown
(see Section 3.5) that the microscopic spectral density does not depend on the
higher-order terms in this potential provided that the average spectral density near
zero remains nonzero. The matrix elements of W are either real [β = 1, chiral
Gaussian Orthogonal Ensemble (chGOE)], complex [β = 2, chiral Gaussian Uni-
tary Ensemble (chGUE)], or quaternion real [β = 4, chiral Gaussian Symplectic
Ensemble (chGSE)]. In the latter case, the eigenvalues ofD are doubly degenerate,
and the use of Majorana fermions is implemented by replacing the determinant
by its square root. For a non-Gaussian potential v(φ), we omit the G in the ab-
breviations and use chOE, chUE, and chSE, respectively. Two earlier attempts to
describe QCDDirac eigenvalues used the Wigner-Dyson ensembles instead of the
above chiral ensembles (32).
This model reproduces the following symmetries of the QCD partition func-
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! The UA(1) symmetry. All eigenvalues of the random matrix Dirac operator
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2.2 Global Symmetries

The structure of the QCD Lagrangian is to a large extent determined by symmetries
and renormalizability. As noted above, it is important to analyze these symmetries
to construct the correct effective low-energy theory and the correct random matrix
model. We now discuss three important global symmetries of the partition function
and the Dirac operator.

2.2.1 Chiral Symmetry and Topology The Dirac operator satisfies

{γ5,D} = 0. 8.

This relation is a compact expression of chiral symmetry, i.e. of the fact that right-
handed and left-handed quarks can be rotated independently. One can write down
an eigenvalue equation for D,

Dψn = iλnψn, 9.

where the eigenvalues and eigenfunctions depend on the gauge field in Equation 7.
Using Equation 8, one can show that the nonzero eigenvalues of D occur in pairs
±iλn with eigenfunctions ψn and γ5ψn . There can also be eigenvalues equal to
zero, λn = 0. The corresponding eigenfunctions can be arranged to be simul-
taneous eigenfunctions of γ5 with eigenvalue ±1, i.e. these states have definite
chirality. Denoting the number of zero eigenvalues with positive and negative
chirality by N+ and N−, respectively, the Atiyah-Singer index theorem states that
ν ≡ N+ − N− is a topological invariant that does not change under continuous
changes of the gauge field. However, the individual numbers N+ and N− are
not protected by topology, i.e. very small deformations of the gauge field will lift
accidental zero modes. Thus, unless we impose very special constraints on the
gauge fields, we generically have either N+ = 0 or N− = 0.

In a chiral basis with γ5ψ
R/L = ±ψ R/L , one can use Equation 8 to show that

〈  ψ R
m |D|ψ L

n 〉 = 0 = 〈  ψ L
m |D|ψ R

n 〉 for all m and n, where  ψ = ψ†γ0. From this
property and the fact that D is anti-Hermitian, it follows that the Dirac operator
has the matrix structure

D =
(

0 iW
iW † 0

)
. 10.

This off-diagonal block structure is characteristic for systems with chiral symme-
try. If there are n + ν right-handed and n left-handed modes, the matrix W has
dimension (n+ ν)× n, and the matrix D in Equation 10 has |ν| eigenvalues equal
to zero.

The QCD partition function can be decomposed into sectors of definite
topological charge ν,

ZQCD(θ) =
∞∑

ν=−∞
eiνθ ZQCD

ν . 11.
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3.1 Introduction of the Model

In this sectionwe introduce a chiral randommatrix theory (chRMT)with the global
symmetries of the QCDDirac operator. In the spirit of the invariant randommatrix
ensembles, we construct a model with eigenfunctions distributed uniformly over
the unitary unit sphere. This is achieved by choosing Gaussian-distributed random
matrix elements. We thus arrive at the following chRMT (20, 24):

ZβN f ,ν
(m1, . . . ,mN f ) =

∫
DW

N f∏

f=1
det(D + m f )e− Nβ

4 Trv(W†W ), 28.

where β is the Dyson index,

D =
(

0
iW †

iW
0

)
, 29.

andW is an n ×m matrix with ν = m − n and N = n +m. The interpretation of
this model is that N low-lying modes interact via a random interaction. A natural
representation of this model is in the form of gauge field configurations given
by a liquid of instantons. Then the low-lying modes are the zero modes of each
instanton. We assume that ν does not exceed

√
N so that, to a good approximation,

n = N/2 for large N. The parameter N is identified as the dimensionless volume
of spacetime. For the formulation of this model with explicit factors of N/V
included, see Reference 31. The potential v is defined by

v(φ) =
∑

k≥1
akφk . 30.

The simplest case is the Gaussian case, where v(φ) = $2φ. It can be shown
(see Section 3.5) that the microscopic spectral density does not depend on the
higher-order terms in this potential provided that the average spectral density near
zero remains nonzero. The matrix elements of W are either real [β = 1, chiral
Gaussian Orthogonal Ensemble (chGOE)], complex [β = 2, chiral Gaussian Uni-
tary Ensemble (chGUE)], or quaternion real [β = 4, chiral Gaussian Symplectic
Ensemble (chGSE)]. In the latter case, the eigenvalues ofD are doubly degenerate,
and the use of Majorana fermions is implemented by replacing the determinant
by its square root. For a non-Gaussian potential v(φ), we omit the G in the ab-
breviations and use chOE, chUE, and chSE, respectively. Two earlier attempts to
describe QCDDirac eigenvalues used the Wigner-Dyson ensembles instead of the
above chiral ensembles (32).
This model reproduces the following symmetries of the QCD partition func-

tion:
! The UA(1) symmetry. All eigenvalues of the random matrix Dirac operator
occur in pairs ±iλn or are zero.
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(2)    topological structure of QCD                                           zero eigenvalues

(3)    flavor symmetry & anti-unitary symmetry

� matrix elements of W flavor symmetry gauge theory
1 real SU(2Nf ) SU(2) fermions in fund. rep.
2 complex SU(Nf )⇥ SU(Nf ) SU(Nc) femrions in fund. rep. Nc > 3
4 real quaternion SU(Nf ) (Majonara) SU(Nc) fermions in adj. rep.

� spontaneous symmetry breaking gauge theory
1 SU(2Nf ) ! Sp(2Nf ) SU(2) fermions in fund. rep.
2 SU(Nf )⇥ SU(Nf ) ! SU(Nf ) SU(Nc) femrions in fund. rep. Nc > 3
4 SU(Nf ) ! O(Nf ) (Majonara) SU(Nc) fermions in adj. rep.

In 24 lattice, the Polyakov loop may be given by

Pµ =
1

N
trUn,µUn+µ,µ. (11)

|Pµ| �! 0 as N �! 1 (12)

e�
N�
4 Tr⌃W †W (13)

or L ⌧ 1

m⇡
(14)

4 Numerical Results: Z4
Nc

Center Symmetry

The non-trivial condition of the usage of the large Nc equvalence is that the Z4
Nc

center symmetry
of the reduced volume theory must be unbroken. Some evidences of whether center symmetry is
unbroken are as follows: (1) the Polyakov loop scatters radially in the vicinity of origin in complex
plane, (2) the magnitude of the Polyakov loop approaches zero as Nc increases where the predicted
asypmtotic scaling behavior is 1/Nc, (3) the average plaquette value measured from the reduced
model agrees with that measured from the larage volume lattice gauge theory. In this section,
we present our findings for SU(Nc) gauge theory without adjoint fermions and with two heavy
adjoint fermions.

4.1 SU(Nc) without adjoint fermions

The reduced model of pure four-dimensional Euclidean Yang-Mills theory is not our target theory.
Nevertheless, it is still instructive to understand the breaking of center symmetry and provides a
nontrivial check of our simulation code by reproducing known results, i.e. the center symmetry
is broken at weak coupling limit. In Fig. 1, we show scatter plots 7 of the Polyakov loops defined
by Eq. 11 for b = 0.5 and three values of Nc. In this weak couling regime, the plots clearly show

7Throughout this work, we used about a hundred ensembles and chose one of the direction µ out of four for

scatter plots. We found similar scatter plots of the Polyakov loops for three other directions.
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3.1 Introduction of the Model

In this sectionwe introduce a chiral randommatrix theory (chRMT)with the global
symmetries of the QCDDirac operator. In the spirit of the invariant randommatrix
ensembles, we construct a model with eigenfunctions distributed uniformly over
the unitary unit sphere. This is achieved by choosing Gaussian-distributed random
matrix elements. We thus arrive at the following chRMT (20, 24):

ZβN f ,ν
(m1, . . . ,mN f ) =

∫
DW

N f∏

f=1
det(D + m f )e− Nβ

4 Trv(W†W ), 28.

where β is the Dyson index,

D =
(

0
iW †

iW
0

)
, 29.

andW is an n ×m matrix with ν = m − n and N = n +m. The interpretation of
this model is that N low-lying modes interact via a random interaction. A natural
representation of this model is in the form of gauge field configurations given
by a liquid of instantons. Then the low-lying modes are the zero modes of each
instanton. We assume that ν does not exceed

√
N so that, to a good approximation,

n = N/2 for large N. The parameter N is identified as the dimensionless volume
of spacetime. For the formulation of this model with explicit factors of N/V
included, see Reference 31. The potential v is defined by

v(φ) =
∑

k≥1
akφk . 30.

The simplest case is the Gaussian case, where v(φ) = $2φ. It can be shown
(see Section 3.5) that the microscopic spectral density does not depend on the
higher-order terms in this potential provided that the average spectral density near
zero remains nonzero. The matrix elements of W are either real [β = 1, chiral
Gaussian Orthogonal Ensemble (chGOE)], complex [β = 2, chiral Gaussian Uni-
tary Ensemble (chGUE)], or quaternion real [β = 4, chiral Gaussian Symplectic
Ensemble (chGSE)]. In the latter case, the eigenvalues ofD are doubly degenerate,
and the use of Majorana fermions is implemented by replacing the determinant
by its square root. For a non-Gaussian potential v(φ), we omit the G in the ab-
breviations and use chOE, chUE, and chSE, respectively. Two earlier attempts to
describe QCDDirac eigenvalues used the Wigner-Dyson ensembles instead of the
above chiral ensembles (32).
This model reproduces the following symmetries of the QCD partition func-

tion:
! The UA(1) symmetry. All eigenvalues of the random matrix Dirac operator
occur in pairs ±iλn or are zero.
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of spacetime. For the formulation of this model with explicit factors of N/V
included, see Reference 31. The potential v is defined by

v(φ) =
∑

k≥1
akφk . 30.

The simplest case is the Gaussian case, where v(φ) = $2φ. It can be shown
(see Section 3.5) that the microscopic spectral density does not depend on the
higher-order terms in this potential provided that the average spectral density near
zero remains nonzero. The matrix elements of W are either real [β = 1, chiral
Gaussian Orthogonal Ensemble (chGOE)], complex [β = 2, chiral Gaussian Uni-
tary Ensemble (chGUE)], or quaternion real [β = 4, chiral Gaussian Symplectic
Ensemble (chGSE)]. In the latter case, the eigenvalues ofD are doubly degenerate,
and the use of Majorana fermions is implemented by replacing the determinant
by its square root. For a non-Gaussian potential v(φ), we omit the G in the ab-
breviations and use chOE, chUE, and chSE, respectively. Two earlier attempts to
describe QCDDirac eigenvalues used the Wigner-Dyson ensembles instead of the
above chiral ensembles (32).
This model reproduces the following symmetries of the QCD partition func-

tion:
! The UA(1) symmetry. All eigenvalues of the random matrix Dirac operator
occur in pairs ±iλn or are zero.
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3.1 Introduction of the Model

In this sectionwe introduce a chiral randommatrix theory (chRMT)with the global
symmetries of the QCDDirac operator. In the spirit of the invariant randommatrix
ensembles, we construct a model with eigenfunctions distributed uniformly over
the unitary unit sphere. This is achieved by choosing Gaussian-distributed random
matrix elements. We thus arrive at the following chRMT (20, 24):

ZβN f ,ν
(m1, . . . ,mN f ) =

∫
DW

N f∏

f=1
det(D + m f )e− Nβ

4 Trv(W†W ), 28.

where β is the Dyson index,

D =
(

0
iW †

iW
0

)
, 29.

andW is an n ×m matrix with ν = m − n and N = n +m. The interpretation of
this model is that N low-lying modes interact via a random interaction. A natural
representation of this model is in the form of gauge field configurations given
by a liquid of instantons. Then the low-lying modes are the zero modes of each
instanton. We assume that ν does not exceed

√
N so that, to a good approximation,

n = N/2 for large N. The parameter N is identified as the dimensionless volume
of spacetime. For the formulation of this model with explicit factors of N/V
included, see Reference 31. The potential v is defined by

v(φ) =
∑

k≥1
akφk . 30.

The simplest case is the Gaussian case, where v(φ) = $2φ. It can be shown
(see Section 3.5) that the microscopic spectral density does not depend on the
higher-order terms in this potential provided that the average spectral density near
zero remains nonzero. The matrix elements of W are either real [β = 1, chiral
Gaussian Orthogonal Ensemble (chGOE)], complex [β = 2, chiral Gaussian Uni-
tary Ensemble (chGUE)], or quaternion real [β = 4, chiral Gaussian Symplectic
Ensemble (chGSE)]. In the latter case, the eigenvalues ofD are doubly degenerate,
and the use of Majorana fermions is implemented by replacing the determinant
by its square root. For a non-Gaussian potential v(φ), we omit the G in the ab-
breviations and use chOE, chUE, and chSE, respectively. Two earlier attempts to
describe QCDDirac eigenvalues used the Wigner-Dyson ensembles instead of the
above chiral ensembles (32).
This model reproduces the following symmetries of the QCD partition func-

tion:
! The UA(1) symmetry. All eigenvalues of the random matrix Dirac operator
occur in pairs ±iλn or are zero.
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2.2 Global Symmetries

The structure of the QCD Lagrangian is to a large extent determined by symmetries
and renormalizability. As noted above, it is important to analyze these symmetries
to construct the correct effective low-energy theory and the correct random matrix
model. We now discuss three important global symmetries of the partition function
and the Dirac operator.

2.2.1 Chiral Symmetry and Topology The Dirac operator satisfies

{γ5,D} = 0. 8.

This relation is a compact expression of chiral symmetry, i.e. of the fact that right-
handed and left-handed quarks can be rotated independently. One can write down
an eigenvalue equation for D,

Dψn = iλnψn, 9.

where the eigenvalues and eigenfunctions depend on the gauge field in Equation 7.
Using Equation 8, one can show that the nonzero eigenvalues of D occur in pairs
±iλn with eigenfunctions ψn and γ5ψn . There can also be eigenvalues equal to
zero, λn = 0. The corresponding eigenfunctions can be arranged to be simul-
taneous eigenfunctions of γ5 with eigenvalue ±1, i.e. these states have definite
chirality. Denoting the number of zero eigenvalues with positive and negative
chirality by N+ and N−, respectively, the Atiyah-Singer index theorem states that
ν ≡ N+ − N− is a topological invariant that does not change under continuous
changes of the gauge field. However, the individual numbers N+ and N− are
not protected by topology, i.e. very small deformations of the gauge field will lift
accidental zero modes. Thus, unless we impose very special constraints on the
gauge fields, we generically have either N+ = 0 or N− = 0.

In a chiral basis with γ5ψ
R/L = ±ψ R/L , one can use Equation 8 to show that

〈  ψ R
m |D|ψ L

n 〉 = 0 = 〈  ψ L
m |D|ψ R

n 〉 for all m and n, where  ψ = ψ†γ0. From this
property and the fact that D is anti-Hermitian, it follows that the Dirac operator
has the matrix structure

D =
(

0 iW
iW † 0

)
. 10.

This off-diagonal block structure is characteristic for systems with chiral symme-
try. If there are n + ν right-handed and n left-handed modes, the matrix W has
dimension (n+ ν)× n, and the matrix D in Equation 10 has |ν| eigenvalues equal
to zero.

The QCD partition function can be decomposed into sectors of definite
topological charge ν,

ZQCD(θ) =
∞∑

ν=−∞
eiνθ ZQCD

ν . 11.
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3.1 Introduction of the Model

In this sectionwe introduce a chiral randommatrix theory (chRMT)with the global
symmetries of the QCDDirac operator. In the spirit of the invariant randommatrix
ensembles, we construct a model with eigenfunctions distributed uniformly over
the unitary unit sphere. This is achieved by choosing Gaussian-distributed random
matrix elements. We thus arrive at the following chRMT (20, 24):

ZβN f ,ν
(m1, . . . ,mN f ) =

∫
DW

N f∏

f=1
det(D + m f )e− Nβ

4 Trv(W†W ), 28.

where β is the Dyson index,

D =
(

0
iW †

iW
0

)
, 29.

andW is an n ×m matrix with ν = m − n and N = n +m. The interpretation of
this model is that N low-lying modes interact via a random interaction. A natural
representation of this model is in the form of gauge field configurations given
by a liquid of instantons. Then the low-lying modes are the zero modes of each
instanton. We assume that ν does not exceed

√
N so that, to a good approximation,

n = N/2 for large N. The parameter N is identified as the dimensionless volume
of spacetime. For the formulation of this model with explicit factors of N/V
included, see Reference 31. The potential v is defined by

v(φ) =
∑

k≥1
akφk . 30.

The simplest case is the Gaussian case, where v(φ) = $2φ. It can be shown
(see Section 3.5) that the microscopic spectral density does not depend on the
higher-order terms in this potential provided that the average spectral density near
zero remains nonzero. The matrix elements of W are either real [β = 1, chiral
Gaussian Orthogonal Ensemble (chGOE)], complex [β = 2, chiral Gaussian Uni-
tary Ensemble (chGUE)], or quaternion real [β = 4, chiral Gaussian Symplectic
Ensemble (chGSE)]. In the latter case, the eigenvalues ofD are doubly degenerate,
and the use of Majorana fermions is implemented by replacing the determinant
by its square root. For a non-Gaussian potential v(φ), we omit the G in the ab-
breviations and use chOE, chUE, and chSE, respectively. Two earlier attempts to
describe QCDDirac eigenvalues used the Wigner-Dyson ensembles instead of the
above chiral ensembles (32).
This model reproduces the following symmetries of the QCD partition func-

tion:
! The UA(1) symmetry. All eigenvalues of the random matrix Dirac operator
occur in pairs ±iλn or are zero.
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anti-
Hermitian

(2)    topological structure of QCD                                           zero eigenvalues

(3)    flavor symmetry & anti-unitary symmetry

� matrix elements of W flavor symmetry gauge theory
1 real SU(2Nf ) SU(2) fermions in fund. rep.
2 complex SU(Nf )⇥ SU(Nf ) SU(Nc) femrions in fund. rep. Nc > 3
4 real quaternion SU(Nf ) (Majonara) SU(Nc) fermions in adj. rep.

� spontaneous symmetry breaking gauge theory
1 SU(2Nf ) ! Sp(2Nf ) SU(2) fermions in fund. rep.
2 SU(Nf )⇥ SU(Nf ) ! SU(Nf ) SU(Nc) femrions in fund. rep. Nc > 3
4 SU(Nf ) ! O(Nf ) (Majonara) SU(Nc) fermions in adj. rep.

In 24 lattice, the Polyakov loop may be given by

Pµ =
1

N
trUn,µUn+µ,µ. (11)

|Pµ| �! 0 as N �! 1 (12)

e�
N�
4 Tr⌃W †W (13)

or L ⌧ 1

m⇡
(14)

4 Numerical Results: Z4
Nc

Center Symmetry

The non-trivial condition of the usage of the large Nc equvalence is that the Z4
Nc

center symmetry
of the reduced volume theory must be unbroken. Some evidences of whether center symmetry is
unbroken are as follows: (1) the Polyakov loop scatters radially in the vicinity of origin in complex
plane, (2) the magnitude of the Polyakov loop approaches zero as Nc increases where the predicted
asypmtotic scaling behavior is 1/Nc, (3) the average plaquette value measured from the reduced
model agrees with that measured from the larage volume lattice gauge theory. In this section,
we present our findings for SU(Nc) gauge theory without adjoint fermions and with two heavy
adjoint fermions.

4.1 SU(Nc) without adjoint fermions

The reduced model of pure four-dimensional Euclidean Yang-Mills theory is not our target theory.
Nevertheless, it is still instructive to understand the breaking of center symmetry and provides a
nontrivial check of our simulation code by reproducing known results, i.e. the center symmetry
is broken at weak coupling limit. In Fig. 1, we show scatter plots 7 of the Polyakov loops defined
by Eq. 11 for b = 0.5 and three values of Nc. In this weak couling regime, the plots clearly show

7Throughout this work, we used about a hundred ensembles and chose one of the direction µ out of four for

scatter plots. We found similar scatter plots of the Polyakov loops for three other directions.

4

27

Large Nc volume reduction and chiral random matrix theory Jong-Wan Lee

original (parent) theory, we obtain a new (daughter) theory by performing a projection under some
discrete subgroup of the global symmetry of the parent theory. If the discrete symmetry does not
break down spontaneously, the correlation functions of invariant (neutral) sectors of operators in
both theories are equal up to a trivial rescaling factor.

Provided the chiral symmetry is spontaneously broken, the dynamics of QCD at below LQCD

can be described by the low-energy effective theory where the degrees of freedom are Goldston
bosons such as pions instead of quarks and gluons. If we go further inside the e-regime, where
the one-fourth of space-time volume is much smaller than the pion Compton length, the relevant
degrees of freedom are zero modes of pions and the density of Dirac eigenvalues near zero is related
to the chiral condensate S via Banks-Casher relation [11]. The distribution of the low-lying Dirac
eigenvalues can be calculated using the chiral random matrix theory (cRMT) in the microscopic
limit, N ! • while having mN fixed, where the matrix size N is identified by V in the standard
gauge theory (for a review, see [12]). In large Nc gauge theories, the number of color charges Nc

are also relevant degrees of freedom and the corresponding limit may be obtained by taking the
large Nc limit with a fixed mN ⇠ mV Na

c , where the constant a can depend on the representation of
fermions. Let us call this limit as the "cRMT limit" which is very different from the ’t Hooft limit:
the fermion mass scales with Nc and hence ch,B in Eq. 2.1 also has a nontrivial Nc-dependence
implying that the ’t Hooft power counting rules are not valid. Because of this difference, the large
Nc equivalences do not hold in the cRMT limit. In the next section, however, we argue that the EK
equivalence and the cRMT combined with lattice simulations can simultaneously be used to detect
the ScSB in QCD-like theories.

lV Na
c (2.2)

L � 1/LQCD (2.3)

L ⌧ 1/mp (2.4)

mqV S : fixed, V ! • (2.5)

(2.6)

W is N ⇥N complex matrix

3. Strategy of detecting the spontaneous chiral symmetry breaking

In this section we establish the way to use the cRMT in large Nc gauge theory for detection
of the ScSB. First let us recall how one can confirm the chiral symmetry breakdown in the or-
dinary SU(3) QCD. The criterion for the ScSB is the nonzero chiral condensate in the standard
thermodynamic limit,

hȳyi 6= 0 in the massless limit m ! 0 after taking the large-volume limit V ! •.

On the other hand, for QCD in the e-regime, the ScSB is recognized by the agreement of the
low-lying Dirac spectrum with the prediction from cRMT.

In the case of large Nc gauge theory, the logic is as follows. First, we calculate the low-
lying Dirac spectrum of the large Nc gauge theory in a small box (e.g. on a 14 or 24 lattice) and
compare the spectrum with the prediction from cRMT. Here the probe mass mprobe must scale
as mprobe ⇠ 1/Na

c for large Nc, otherwise such that the cRMT limit is realized. Because of this
scaling, the EK equivalence, requiring Nc ! • with m fixed, can not be applied directly. However,

3



Chiral Random Matrix Theory (chRMT)

chRMT provides equivalent descriptions of the low-energy limit of 
QCD-like theories if the chiral symmetry is spontaneously broken.

7

Banks-Casher relation

Table 1: Fit results of extrapolations of the polyakov loop and the plaquette to N
c

! 1 for
ensembles with b = 0.5 and two heavy adjoint fermions.

Data set Fit function c0 c1 c2 �2/d.o.f
N

c

= [2, 16] c0 + c1/N
2
c

+ c2/N
4
c

0.72067(14) 0.405(12) �0.283(61) 0.49
Plaquette N

c

= [4, 16] c0 + c1/N
2
c

0.72072(14) 0.396(10) 0.41
N

c

= [4, 16] c0 + c1/Nc

+ c2/N
2
c

0.72053(71) 0.003(13) 0.383(50) 0.47
Polyakov loop N

c

= [5, 16] c0 + c1/Nc

0.0026(12) 0.819(15) 0.89
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Figure 6: (Left) Average plaquette values and (Right) average values of the magnitudes of the
Polyakov loops along with fit results in Table 1.

site reduced model, the 1/N
c

correction term would be suppressed by 1/V . Indeed, we obtained a
consistent result where the one-sixteenth of the coe�cient of 1/N

c

from [hanada] is well within the
uncertainty of our results shown in Table 1. The extracted plauquette value also agrees with that
in single site model [hanada], but it is systematically bigger than that from the large volume lattice
calculation for pure Yang-Mills due to the modification from finite fermion mass. The magnitude
of the Polyakov loop goes to zero as N

c

increases; it scales as 1/N
c

in the asymtotic region. The
average plaquette value is consistent with that from large volume lattice gauge theory; it scales
as 1/N2

c

in the asymptotic region.

7 Numerical Results: Dirac Spectrum

�� =
1

⇢(0)
⇠ 1

N
(5)

�� ⇠ 1

N2
(6)

⌃ = |h ̄ i| = lim
✏!0

lim
m!0

lim
V!1

⇡⇢(✏)

V
(7)

8

• Order parameter of the spontaneous symmetry breaking
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3. CHIRAL RANDOM MATRIX THEORY

3.1 Introduction of the Model

In this sectionwe introduce a chiral randommatrix theory (chRMT)with the global
symmetries of the QCDDirac operator. In the spirit of the invariant randommatrix
ensembles, we construct a model with eigenfunctions distributed uniformly over
the unitary unit sphere. This is achieved by choosing Gaussian-distributed random
matrix elements. We thus arrive at the following chRMT (20, 24):

ZβN f ,ν
(m1, . . . ,mN f ) =

∫
DW

N f∏

f=1
det(D + m f )e− Nβ

4 Trv(W†W ), 28.

where β is the Dyson index,

D =
(

0
iW †

iW
0

)
, 29.

andW is an n ×m matrix with ν = m − n and N = n +m. The interpretation of
this model is that N low-lying modes interact via a random interaction. A natural
representation of this model is in the form of gauge field configurations given
by a liquid of instantons. Then the low-lying modes are the zero modes of each
instanton. We assume that ν does not exceed

√
N so that, to a good approximation,

n = N/2 for large N. The parameter N is identified as the dimensionless volume
of spacetime. For the formulation of this model with explicit factors of N/V
included, see Reference 31. The potential v is defined by

v(φ) =
∑

k≥1
akφk . 30.

The simplest case is the Gaussian case, where v(φ) = $2φ. It can be shown
(see Section 3.5) that the microscopic spectral density does not depend on the
higher-order terms in this potential provided that the average spectral density near
zero remains nonzero. The matrix elements of W are either real [β = 1, chiral
Gaussian Orthogonal Ensemble (chGOE)], complex [β = 2, chiral Gaussian Uni-
tary Ensemble (chGUE)], or quaternion real [β = 4, chiral Gaussian Symplectic
Ensemble (chGSE)]. In the latter case, the eigenvalues ofD are doubly degenerate,
and the use of Majorana fermions is implemented by replacing the determinant
by its square root. For a non-Gaussian potential v(φ), we omit the G in the ab-
breviations and use chOE, chUE, and chSE, respectively. Two earlier attempts to
describe QCDDirac eigenvalues used the Wigner-Dyson ensembles instead of the
above chiral ensembles (32).
This model reproduces the following symmetries of the QCD partition func-

tion:
! The UA(1) symmetry. All eigenvalues of the random matrix Dirac operator
occur in pairs ±iλn or are zero.
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Chiral Random Matrix Theory (chRMT)

Theory with the global symmetry of QCD, but matrix elements of 
the Dirac operator replaced by random numbers
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3. CHIRAL RANDOM MATRIX THEORY

3.1 Introduction of the Model

In this sectionwe introduce a chiral randommatrix theory (chRMT)with the global
symmetries of the QCDDirac operator. In the spirit of the invariant randommatrix
ensembles, we construct a model with eigenfunctions distributed uniformly over
the unitary unit sphere. This is achieved by choosing Gaussian-distributed random
matrix elements. We thus arrive at the following chRMT (20, 24):

ZβN f ,ν
(m1, . . . ,mN f ) =

∫
DW

N f∏

f=1
det(D + m f )e− Nβ

4 Trv(W†W ), 28.

where β is the Dyson index,

D =
(

0
iW †

iW
0

)
, 29.

andW is an n ×m matrix with ν = m − n and N = n +m. The interpretation of
this model is that N low-lying modes interact via a random interaction. A natural
representation of this model is in the form of gauge field configurations given
by a liquid of instantons. Then the low-lying modes are the zero modes of each
instanton. We assume that ν does not exceed

√
N so that, to a good approximation,

n = N/2 for large N. The parameter N is identified as the dimensionless volume
of spacetime. For the formulation of this model with explicit factors of N/V
included, see Reference 31. The potential v is defined by

v(φ) =
∑

k≥1
akφk . 30.

The simplest case is the Gaussian case, where v(φ) = $2φ. It can be shown
(see Section 3.5) that the microscopic spectral density does not depend on the
higher-order terms in this potential provided that the average spectral density near
zero remains nonzero. The matrix elements of W are either real [β = 1, chiral
Gaussian Orthogonal Ensemble (chGOE)], complex [β = 2, chiral Gaussian Uni-
tary Ensemble (chGUE)], or quaternion real [β = 4, chiral Gaussian Symplectic
Ensemble (chGSE)]. In the latter case, the eigenvalues ofD are doubly degenerate,
and the use of Majorana fermions is implemented by replacing the determinant
by its square root. For a non-Gaussian potential v(φ), we omit the G in the ab-
breviations and use chOE, chUE, and chSE, respectively. Two earlier attempts to
describe QCDDirac eigenvalues used the Wigner-Dyson ensembles instead of the
above chiral ensembles (32).
This model reproduces the following symmetries of the QCD partition func-

tion:
! The UA(1) symmetry. All eigenvalues of the random matrix Dirac operator
occur in pairs ±iλn or are zero.
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3. CHIRAL RANDOM MATRIX THEORY

3.1 Introduction of the Model

In this sectionwe introduce a chiral randommatrix theory (chRMT)with the global
symmetries of the QCDDirac operator. In the spirit of the invariant randommatrix
ensembles, we construct a model with eigenfunctions distributed uniformly over
the unitary unit sphere. This is achieved by choosing Gaussian-distributed random
matrix elements. We thus arrive at the following chRMT (20, 24):

ZβN f ,ν
(m1, . . . ,mN f ) =

∫
DW

N f∏

f=1
det(D + m f )e− Nβ

4 Trv(W†W ), 28.

where β is the Dyson index,

D =
(

0
iW †

iW
0

)
, 29.

andW is an n ×m matrix with ν = m − n and N = n +m. The interpretation of
this model is that N low-lying modes interact via a random interaction. A natural
representation of this model is in the form of gauge field configurations given
by a liquid of instantons. Then the low-lying modes are the zero modes of each
instanton. We assume that ν does not exceed

√
N so that, to a good approximation,

n = N/2 for large N. The parameter N is identified as the dimensionless volume
of spacetime. For the formulation of this model with explicit factors of N/V
included, see Reference 31. The potential v is defined by

v(φ) =
∑

k≥1
akφk . 30.

The simplest case is the Gaussian case, where v(φ) = $2φ. It can be shown
(see Section 3.5) that the microscopic spectral density does not depend on the
higher-order terms in this potential provided that the average spectral density near
zero remains nonzero. The matrix elements of W are either real [β = 1, chiral
Gaussian Orthogonal Ensemble (chGOE)], complex [β = 2, chiral Gaussian Uni-
tary Ensemble (chGUE)], or quaternion real [β = 4, chiral Gaussian Symplectic
Ensemble (chGSE)]. In the latter case, the eigenvalues ofD are doubly degenerate,
and the use of Majorana fermions is implemented by replacing the determinant
by its square root. For a non-Gaussian potential v(φ), we omit the G in the ab-
breviations and use chOE, chUE, and chSE, respectively. Two earlier attempts to
describe QCDDirac eigenvalues used the Wigner-Dyson ensembles instead of the
above chiral ensembles (32).
This model reproduces the following symmetries of the QCD partition func-

tion:
! The UA(1) symmetry. All eigenvalues of the random matrix Dirac operator
occur in pairs ±iλn or are zero.
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3.1 Introduction of the Model

In this sectionwe introduce a chiral randommatrix theory (chRMT)with the global
symmetries of the QCDDirac operator. In the spirit of the invariant randommatrix
ensembles, we construct a model with eigenfunctions distributed uniformly over
the unitary unit sphere. This is achieved by choosing Gaussian-distributed random
matrix elements. We thus arrive at the following chRMT (20, 24):

ZβN f ,ν
(m1, . . . ,mN f ) =

∫
DW

N f∏

f=1
det(D + m f )e− Nβ

4 Trv(W†W ), 28.

where β is the Dyson index,

D =
(

0
iW †

iW
0

)
, 29.

andW is an n ×m matrix with ν = m − n and N = n +m. The interpretation of
this model is that N low-lying modes interact via a random interaction. A natural
representation of this model is in the form of gauge field configurations given
by a liquid of instantons. Then the low-lying modes are the zero modes of each
instanton. We assume that ν does not exceed

√
N so that, to a good approximation,

n = N/2 for large N. The parameter N is identified as the dimensionless volume
of spacetime. For the formulation of this model with explicit factors of N/V
included, see Reference 31. The potential v is defined by

v(φ) =
∑

k≥1
akφk . 30.

The simplest case is the Gaussian case, where v(φ) = $2φ. It can be shown
(see Section 3.5) that the microscopic spectral density does not depend on the
higher-order terms in this potential provided that the average spectral density near
zero remains nonzero. The matrix elements of W are either real [β = 1, chiral
Gaussian Orthogonal Ensemble (chGOE)], complex [β = 2, chiral Gaussian Uni-
tary Ensemble (chGUE)], or quaternion real [β = 4, chiral Gaussian Symplectic
Ensemble (chGSE)]. In the latter case, the eigenvalues ofD are doubly degenerate,
and the use of Majorana fermions is implemented by replacing the determinant
by its square root. For a non-Gaussian potential v(φ), we omit the G in the ab-
breviations and use chOE, chUE, and chSE, respectively. Two earlier attempts to
describe QCDDirac eigenvalues used the Wigner-Dyson ensembles instead of the
above chiral ensembles (32).
This model reproduces the following symmetries of the QCD partition func-

tion:
! The UA(1) symmetry. All eigenvalues of the random matrix Dirac operator
occur in pairs ±iλn or are zero.
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2.2 Global Symmetries

The structure of the QCD Lagrangian is to a large extent determined by symmetries
and renormalizability. As noted above, it is important to analyze these symmetries
to construct the correct effective low-energy theory and the correct random matrix
model. We now discuss three important global symmetries of the partition function
and the Dirac operator.

2.2.1 Chiral Symmetry and Topology The Dirac operator satisfies

{γ5,D} = 0. 8.

This relation is a compact expression of chiral symmetry, i.e. of the fact that right-
handed and left-handed quarks can be rotated independently. One can write down
an eigenvalue equation for D,

Dψn = iλnψn, 9.

where the eigenvalues and eigenfunctions depend on the gauge field in Equation 7.
Using Equation 8, one can show that the nonzero eigenvalues of D occur in pairs
±iλn with eigenfunctions ψn and γ5ψn . There can also be eigenvalues equal to
zero, λn = 0. The corresponding eigenfunctions can be arranged to be simul-
taneous eigenfunctions of γ5 with eigenvalue ±1, i.e. these states have definite
chirality. Denoting the number of zero eigenvalues with positive and negative
chirality by N+ and N−, respectively, the Atiyah-Singer index theorem states that
ν ≡ N+ − N− is a topological invariant that does not change under continuous
changes of the gauge field. However, the individual numbers N+ and N− are
not protected by topology, i.e. very small deformations of the gauge field will lift
accidental zero modes. Thus, unless we impose very special constraints on the
gauge fields, we generically have either N+ = 0 or N− = 0.

In a chiral basis with γ5ψ
R/L = ±ψ R/L , one can use Equation 8 to show that

〈  ψ R
m |D|ψ L

n 〉 = 0 = 〈  ψ L
m |D|ψ R

n 〉 for all m and n, where  ψ = ψ†γ0. From this
property and the fact that D is anti-Hermitian, it follows that the Dirac operator
has the matrix structure

D =
(

0 iW
iW † 0

)
. 10.

This off-diagonal block structure is characteristic for systems with chiral symme-
try. If there are n + ν right-handed and n left-handed modes, the matrix W has
dimension (n+ ν)× n, and the matrix D in Equation 10 has |ν| eigenvalues equal
to zero.

The QCD partition function can be decomposed into sectors of definite
topological charge ν,

ZQCD(θ) =
∞∑

ν=−∞
eiνθ ZQCD

ν . 11.
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3.1 Introduction of the Model

In this sectionwe introduce a chiral randommatrix theory (chRMT)with the global
symmetries of the QCDDirac operator. In the spirit of the invariant randommatrix
ensembles, we construct a model with eigenfunctions distributed uniformly over
the unitary unit sphere. This is achieved by choosing Gaussian-distributed random
matrix elements. We thus arrive at the following chRMT (20, 24):

ZβN f ,ν
(m1, . . . ,mN f ) =

∫
DW

N f∏

f=1
det(D + m f )e− Nβ

4 Trv(W†W ), 28.

where β is the Dyson index,

D =
(

0
iW †

iW
0

)
, 29.

andW is an n ×m matrix with ν = m − n and N = n +m. The interpretation of
this model is that N low-lying modes interact via a random interaction. A natural
representation of this model is in the form of gauge field configurations given
by a liquid of instantons. Then the low-lying modes are the zero modes of each
instanton. We assume that ν does not exceed

√
N so that, to a good approximation,

n = N/2 for large N. The parameter N is identified as the dimensionless volume
of spacetime. For the formulation of this model with explicit factors of N/V
included, see Reference 31. The potential v is defined by

v(φ) =
∑

k≥1
akφk . 30.

The simplest case is the Gaussian case, where v(φ) = $2φ. It can be shown
(see Section 3.5) that the microscopic spectral density does not depend on the
higher-order terms in this potential provided that the average spectral density near
zero remains nonzero. The matrix elements of W are either real [β = 1, chiral
Gaussian Orthogonal Ensemble (chGOE)], complex [β = 2, chiral Gaussian Uni-
tary Ensemble (chGUE)], or quaternion real [β = 4, chiral Gaussian Symplectic
Ensemble (chGSE)]. In the latter case, the eigenvalues ofD are doubly degenerate,
and the use of Majorana fermions is implemented by replacing the determinant
by its square root. For a non-Gaussian potential v(φ), we omit the G in the ab-
breviations and use chOE, chUE, and chSE, respectively. Two earlier attempts to
describe QCDDirac eigenvalues used the Wigner-Dyson ensembles instead of the
above chiral ensembles (32).
This model reproduces the following symmetries of the QCD partition func-

tion:
! The UA(1) symmetry. All eigenvalues of the random matrix Dirac operator
occur in pairs ±iλn or are zero.
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anti-
Hermitian

(2)    topological structure of QCD                                           zero eigenvalues

(3)    flavor symmetry & anti-unitary symmetry

� matrix elements of W flavor symmetry gauge theory
1 real SU(2Nf ) SU(2) fermions in fund. rep.
2 complex SU(Nf )⇥ SU(Nf ) SU(Nc) femrions in fund. rep. Nc > 3
4 real quaternion SU(Nf ) (Majonara) SU(Nc) fermions in adj. rep.

� spontaneous symmetry breaking gauge theory
1 SU(2Nf ) ! Sp(2Nf ) SU(2) fermions in fund. rep.
2 SU(Nf )⇥ SU(Nf ) ! SU(Nf ) SU(Nc) femrions in fund. rep. Nc > 3
4 SU(Nf ) ! O(Nf ) (Majonara) SU(Nc) fermions in adj. rep.

In 24 lattice, the Polyakov loop may be given by

Pµ =
1

N
trUn,µUn+µ,µ. (11)

|Pµ| �! 0 as N �! 1 (12)

e�
N�
4 Tr⌃W †W (13)

or L ⌧ 1

m⇡
(14)

4 Numerical Results: Z4
Nc

Center Symmetry

The non-trivial condition of the usage of the large Nc equvalence is that the Z4
Nc

center symmetry
of the reduced volume theory must be unbroken. Some evidences of whether center symmetry is
unbroken are as follows: (1) the Polyakov loop scatters radially in the vicinity of origin in complex
plane, (2) the magnitude of the Polyakov loop approaches zero as Nc increases where the predicted
asypmtotic scaling behavior is 1/Nc, (3) the average plaquette value measured from the reduced
model agrees with that measured from the larage volume lattice gauge theory. In this section,
we present our findings for SU(Nc) gauge theory without adjoint fermions and with two heavy
adjoint fermions.

4.1 SU(Nc) without adjoint fermions

The reduced model of pure four-dimensional Euclidean Yang-Mills theory is not our target theory.
Nevertheless, it is still instructive to understand the breaking of center symmetry and provides a
nontrivial check of our simulation code by reproducing known results, i.e. the center symmetry
is broken at weak coupling limit. In Fig. 1, we show scatter plots 7 of the Polyakov loops defined
by Eq. 11 for b = 0.5 and three values of Nc. In this weak couling regime, the plots clearly show

7Throughout this work, we used about a hundred ensembles and chose one of the direction µ out of four for

scatter plots. We found similar scatter plots of the Polyakov loops for three other directions.

4

27

Chiral Random Matrix Theory (chRMT)

Theory with the global symmetry of QCD, but matrix elements of 
the Dirac operator replaced by random numbers
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3. CHIRAL RANDOM MATRIX THEORY

3.1 Introduction of the Model

In this sectionwe introduce a chiral randommatrix theory (chRMT)with the global
symmetries of the QCDDirac operator. In the spirit of the invariant randommatrix
ensembles, we construct a model with eigenfunctions distributed uniformly over
the unitary unit sphere. This is achieved by choosing Gaussian-distributed random
matrix elements. We thus arrive at the following chRMT (20, 24):

ZβN f ,ν
(m1, . . . ,mN f ) =

∫
DW

N f∏

f=1
det(D + m f )e− Nβ

4 Trv(W†W ), 28.

where β is the Dyson index,

D =
(

0
iW †

iW
0

)
, 29.

andW is an n ×m matrix with ν = m − n and N = n +m. The interpretation of
this model is that N low-lying modes interact via a random interaction. A natural
representation of this model is in the form of gauge field configurations given
by a liquid of instantons. Then the low-lying modes are the zero modes of each
instanton. We assume that ν does not exceed

√
N so that, to a good approximation,

n = N/2 for large N. The parameter N is identified as the dimensionless volume
of spacetime. For the formulation of this model with explicit factors of N/V
included, see Reference 31. The potential v is defined by

v(φ) =
∑

k≥1
akφk . 30.

The simplest case is the Gaussian case, where v(φ) = $2φ. It can be shown
(see Section 3.5) that the microscopic spectral density does not depend on the
higher-order terms in this potential provided that the average spectral density near
zero remains nonzero. The matrix elements of W are either real [β = 1, chiral
Gaussian Orthogonal Ensemble (chGOE)], complex [β = 2, chiral Gaussian Uni-
tary Ensemble (chGUE)], or quaternion real [β = 4, chiral Gaussian Symplectic
Ensemble (chGSE)]. In the latter case, the eigenvalues ofD are doubly degenerate,
and the use of Majorana fermions is implemented by replacing the determinant
by its square root. For a non-Gaussian potential v(φ), we omit the G in the ab-
breviations and use chOE, chUE, and chSE, respectively. Two earlier attempts to
describe QCDDirac eigenvalues used the Wigner-Dyson ensembles instead of the
above chiral ensembles (32).
This model reproduces the following symmetries of the QCD partition func-

tion:
! The UA(1) symmetry. All eigenvalues of the random matrix Dirac operator
occur in pairs ±iλn or are zero.
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3. CHIRAL RANDOM MATRIX THEORY

3.1 Introduction of the Model

In this sectionwe introduce a chiral randommatrix theory (chRMT)with the global
symmetries of the QCDDirac operator. In the spirit of the invariant randommatrix
ensembles, we construct a model with eigenfunctions distributed uniformly over
the unitary unit sphere. This is achieved by choosing Gaussian-distributed random
matrix elements. We thus arrive at the following chRMT (20, 24):

ZβN f ,ν
(m1, . . . ,mN f ) =

∫
DW

N f∏

f=1
det(D + m f )e− Nβ

4 Trv(W†W ), 28.

where β is the Dyson index,

D =
(

0
iW †

iW
0

)
, 29.

andW is an n ×m matrix with ν = m − n and N = n +m. The interpretation of
this model is that N low-lying modes interact via a random interaction. A natural
representation of this model is in the form of gauge field configurations given
by a liquid of instantons. Then the low-lying modes are the zero modes of each
instanton. We assume that ν does not exceed

√
N so that, to a good approximation,

n = N/2 for large N. The parameter N is identified as the dimensionless volume
of spacetime. For the formulation of this model with explicit factors of N/V
included, see Reference 31. The potential v is defined by

v(φ) =
∑

k≥1
akφk . 30.

The simplest case is the Gaussian case, where v(φ) = $2φ. It can be shown
(see Section 3.5) that the microscopic spectral density does not depend on the
higher-order terms in this potential provided that the average spectral density near
zero remains nonzero. The matrix elements of W are either real [β = 1, chiral
Gaussian Orthogonal Ensemble (chGOE)], complex [β = 2, chiral Gaussian Uni-
tary Ensemble (chGUE)], or quaternion real [β = 4, chiral Gaussian Symplectic
Ensemble (chGSE)]. In the latter case, the eigenvalues ofD are doubly degenerate,
and the use of Majorana fermions is implemented by replacing the determinant
by its square root. For a non-Gaussian potential v(φ), we omit the G in the ab-
breviations and use chOE, chUE, and chSE, respectively. Two earlier attempts to
describe QCDDirac eigenvalues used the Wigner-Dyson ensembles instead of the
above chiral ensembles (32).
This model reproduces the following symmetries of the QCD partition func-

tion:
! The UA(1) symmetry. All eigenvalues of the random matrix Dirac operator
occur in pairs ±iλn or are zero.
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3. CHIRAL RANDOM MATRIX THEORY

3.1 Introduction of the Model

In this sectionwe introduce a chiral randommatrix theory (chRMT)with the global
symmetries of the QCDDirac operator. In the spirit of the invariant randommatrix
ensembles, we construct a model with eigenfunctions distributed uniformly over
the unitary unit sphere. This is achieved by choosing Gaussian-distributed random
matrix elements. We thus arrive at the following chRMT (20, 24):

ZβN f ,ν
(m1, . . . ,mN f ) =

∫
DW

N f∏

f=1
det(D + m f )e− Nβ

4 Trv(W†W ), 28.

where β is the Dyson index,

D =
(

0
iW †

iW
0

)
, 29.

andW is an n ×m matrix with ν = m − n and N = n +m. The interpretation of
this model is that N low-lying modes interact via a random interaction. A natural
representation of this model is in the form of gauge field configurations given
by a liquid of instantons. Then the low-lying modes are the zero modes of each
instanton. We assume that ν does not exceed

√
N so that, to a good approximation,

n = N/2 for large N. The parameter N is identified as the dimensionless volume
of spacetime. For the formulation of this model with explicit factors of N/V
included, see Reference 31. The potential v is defined by

v(φ) =
∑

k≥1
akφk . 30.

The simplest case is the Gaussian case, where v(φ) = $2φ. It can be shown
(see Section 3.5) that the microscopic spectral density does not depend on the
higher-order terms in this potential provided that the average spectral density near
zero remains nonzero. The matrix elements of W are either real [β = 1, chiral
Gaussian Orthogonal Ensemble (chGOE)], complex [β = 2, chiral Gaussian Uni-
tary Ensemble (chGUE)], or quaternion real [β = 4, chiral Gaussian Symplectic
Ensemble (chGSE)]. In the latter case, the eigenvalues ofD are doubly degenerate,
and the use of Majorana fermions is implemented by replacing the determinant
by its square root. For a non-Gaussian potential v(φ), we omit the G in the ab-
breviations and use chOE, chUE, and chSE, respectively. Two earlier attempts to
describe QCDDirac eigenvalues used the Wigner-Dyson ensembles instead of the
above chiral ensembles (32).
This model reproduces the following symmetries of the QCD partition func-

tion:
! The UA(1) symmetry. All eigenvalues of the random matrix Dirac operator
occur in pairs ±iλn or are zero.
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2.2 Global Symmetries

The structure of the QCD Lagrangian is to a large extent determined by symmetries
and renormalizability. As noted above, it is important to analyze these symmetries
to construct the correct effective low-energy theory and the correct random matrix
model. We now discuss three important global symmetries of the partition function
and the Dirac operator.

2.2.1 Chiral Symmetry and Topology The Dirac operator satisfies

{γ5,D} = 0. 8.

This relation is a compact expression of chiral symmetry, i.e. of the fact that right-
handed and left-handed quarks can be rotated independently. One can write down
an eigenvalue equation for D,

Dψn = iλnψn, 9.

where the eigenvalues and eigenfunctions depend on the gauge field in Equation 7.
Using Equation 8, one can show that the nonzero eigenvalues of D occur in pairs
±iλn with eigenfunctions ψn and γ5ψn . There can also be eigenvalues equal to
zero, λn = 0. The corresponding eigenfunctions can be arranged to be simul-
taneous eigenfunctions of γ5 with eigenvalue ±1, i.e. these states have definite
chirality. Denoting the number of zero eigenvalues with positive and negative
chirality by N+ and N−, respectively, the Atiyah-Singer index theorem states that
ν ≡ N+ − N− is a topological invariant that does not change under continuous
changes of the gauge field. However, the individual numbers N+ and N− are
not protected by topology, i.e. very small deformations of the gauge field will lift
accidental zero modes. Thus, unless we impose very special constraints on the
gauge fields, we generically have either N+ = 0 or N− = 0.

In a chiral basis with γ5ψ
R/L = ±ψ R/L , one can use Equation 8 to show that

〈  ψ R
m |D|ψ L

n 〉 = 0 = 〈  ψ L
m |D|ψ R

n 〉 for all m and n, where  ψ = ψ†γ0. From this
property and the fact that D is anti-Hermitian, it follows that the Dirac operator
has the matrix structure

D =
(

0 iW
iW † 0

)
. 10.

This off-diagonal block structure is characteristic for systems with chiral symme-
try. If there are n + ν right-handed and n left-handed modes, the matrix W has
dimension (n+ ν)× n, and the matrix D in Equation 10 has |ν| eigenvalues equal
to zero.

The QCD partition function can be decomposed into sectors of definite
topological charge ν,

ZQCD(θ) =
∞∑

ν=−∞
eiνθ ZQCD

ν . 11.
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3.1 Introduction of the Model

In this sectionwe introduce a chiral randommatrix theory (chRMT)with the global
symmetries of the QCDDirac operator. In the spirit of the invariant randommatrix
ensembles, we construct a model with eigenfunctions distributed uniformly over
the unitary unit sphere. This is achieved by choosing Gaussian-distributed random
matrix elements. We thus arrive at the following chRMT (20, 24):

ZβN f ,ν
(m1, . . . ,mN f ) =

∫
DW

N f∏

f=1
det(D + m f )e− Nβ

4 Trv(W†W ), 28.

where β is the Dyson index,

D =
(

0
iW †

iW
0

)
, 29.

andW is an n ×m matrix with ν = m − n and N = n +m. The interpretation of
this model is that N low-lying modes interact via a random interaction. A natural
representation of this model is in the form of gauge field configurations given
by a liquid of instantons. Then the low-lying modes are the zero modes of each
instanton. We assume that ν does not exceed

√
N so that, to a good approximation,

n = N/2 for large N. The parameter N is identified as the dimensionless volume
of spacetime. For the formulation of this model with explicit factors of N/V
included, see Reference 31. The potential v is defined by

v(φ) =
∑

k≥1
akφk . 30.

The simplest case is the Gaussian case, where v(φ) = $2φ. It can be shown
(see Section 3.5) that the microscopic spectral density does not depend on the
higher-order terms in this potential provided that the average spectral density near
zero remains nonzero. The matrix elements of W are either real [β = 1, chiral
Gaussian Orthogonal Ensemble (chGOE)], complex [β = 2, chiral Gaussian Uni-
tary Ensemble (chGUE)], or quaternion real [β = 4, chiral Gaussian Symplectic
Ensemble (chGSE)]. In the latter case, the eigenvalues ofD are doubly degenerate,
and the use of Majorana fermions is implemented by replacing the determinant
by its square root. For a non-Gaussian potential v(φ), we omit the G in the ab-
breviations and use chOE, chUE, and chSE, respectively. Two earlier attempts to
describe QCDDirac eigenvalues used the Wigner-Dyson ensembles instead of the
above chiral ensembles (32).
This model reproduces the following symmetries of the QCD partition func-

tion:
! The UA(1) symmetry. All eigenvalues of the random matrix Dirac operator
occur in pairs ±iλn or are zero.
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(2)    topological structure of QCD                                           zero eigenvalues

(3)    flavor symmetry & anti-unitary symmetry

� matrix elements of W flavor symmetry gauge theory
1 real SU(2Nf ) SU(2) fermions in fund. rep.
2 complex SU(Nf )⇥ SU(Nf ) SU(Nc) femrions in fund. rep. Nc > 3
4 real quaternion SU(Nf ) (Majonara) SU(Nc) fermions in adj. rep.

� spontaneous symmetry breaking gauge theory
1 SU(2Nf ) ! Sp(2Nf ) SU(2) fermions in fund. rep.
2 SU(Nf )⇥ SU(Nf ) ! SU(Nf ) SU(Nc) femrions in fund. rep. Nc > 3
4 SU(Nf ) ! O(Nf ) (Majonara) SU(Nc) fermions in adj. rep.

In 24 lattice, the Polyakov loop may be given by

Pµ =
1

N
trUn,µUn+µ,µ. (11)

|Pµ| �! 0 as N �! 1 (12)

e�
N�
4 Tr⌃W †W (13)

or L ⌧ 1

m⇡
(14)

4 Numerical Results: Z4
Nc

Center Symmetry

The non-trivial condition of the usage of the large Nc equvalence is that the Z4
Nc

center symmetry
of the reduced volume theory must be unbroken. Some evidences of whether center symmetry is
unbroken are as follows: (1) the Polyakov loop scatters radially in the vicinity of origin in complex
plane, (2) the magnitude of the Polyakov loop approaches zero as Nc increases where the predicted
asypmtotic scaling behavior is 1/Nc, (3) the average plaquette value measured from the reduced
model agrees with that measured from the larage volume lattice gauge theory. In this section,
we present our findings for SU(Nc) gauge theory without adjoint fermions and with two heavy
adjoint fermions.

4.1 SU(Nc) without adjoint fermions

The reduced model of pure four-dimensional Euclidean Yang-Mills theory is not our target theory.
Nevertheless, it is still instructive to understand the breaking of center symmetry and provides a
nontrivial check of our simulation code by reproducing known results, i.e. the center symmetry
is broken at weak coupling limit. In Fig. 1, we show scatter plots 7 of the Polyakov loops defined
by Eq. 11 for b = 0.5 and three values of Nc. In this weak couling regime, the plots clearly show

7Throughout this work, we used about a hundred ensembles and chose one of the direction µ out of four for

scatter plots. We found similar scatter plots of the Polyakov loops for three other directions.
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original (parent) theory, we obtain a new (daughter) theory by performing a projection under some
discrete subgroup of the global symmetry of the parent theory. If the discrete symmetry does not
break down spontaneously, the correlation functions of invariant (neutral) sectors of operators in
both theories are equal up to a trivial rescaling factor.

Provided the chiral symmetry is spontaneously broken, the dynamics of QCD at below LQCD

can be described by the low-energy effective theory where the degrees of freedom are Goldston
bosons such as pions instead of quarks and gluons. If we go further inside the e-regime, where
the one-fourth of space-time volume is much smaller than the pion Compton length, the relevant
degrees of freedom are zero modes of pions and the density of Dirac eigenvalues near zero is related
to the chiral condensate S via Banks-Casher relation [11]. The distribution of the low-lying Dirac
eigenvalues can be calculated using the chiral random matrix theory (cRMT) in the microscopic
limit, N ! • while having mN fixed, where the matrix size N is identified by V in the standard
gauge theory (for a review, see [12]). In large Nc gauge theories, the number of color charges Nc

are also relevant degrees of freedom and the corresponding limit may be obtained by taking the
large Nc limit with a fixed mN ⇠ mV Na

c , where the constant a can depend on the representation of
fermions. Let us call this limit as the "cRMT limit" which is very different from the ’t Hooft limit:
the fermion mass scales with Nc and hence ch,B in Eq. 2.1 also has a nontrivial Nc-dependence
implying that the ’t Hooft power counting rules are not valid. Because of this difference, the large
Nc equivalences do not hold in the cRMT limit. In the next section, however, we argue that the EK
equivalence and the cRMT combined with lattice simulations can simultaneously be used to detect
the ScSB in QCD-like theories.

lV Na
c (2.2)

L � 1/LQCD (2.3)

L ⌧ 1/mp (2.4)

3. Strategy of detecting the spontaneous chiral symmetry breaking

In this section we establish the way to use the cRMT in large Nc gauge theory for detection
of the ScSB. First let us recall how one can confirm the chiral symmetry breakdown in the or-
dinary SU(3) QCD. The criterion for the ScSB is the nonzero chiral condensate in the standard
thermodynamic limit,

hȳyi 6= 0 in the massless limit m ! 0 after taking the large-volume limit V ! •.

On the other hand, for QCD in the e-regime, the ScSB is recognized by the agreement of the
low-lying Dirac spectrum with the prediction from cRMT.

In the case of large Nc gauge theory, the logic is as follows. First, we calculate the low-
lying Dirac spectrum of the large Nc gauge theory in a small box (e.g. on a 14 or 24 lattice) and
compare the spectrum with the prediction from cRMT. Here the probe mass mprobe must scale
as mprobe ⇠ 1/Na

c for large Nc, otherwise such that the cRMT limit is realized. Because of this
scaling, the EK equivalence, requiring Nc ! • with m fixed, can not be applied directly. However,
following the same logic as the QCD case except that V is now replaced with Na

c , the agreement of
the spectrum with the prediction from cRMT still establish the ScSB of the large Nc gauge theory
in a small box. Then the EK equivalence leads to the ScSB of the large Nc gauge theory in large
volume. The power a is determined so that mprobe and the Dirac eigenvalues near zero have the
same Nc -dependence, and we will see a = 1 in our setup. The schematic diagram of the detection
of the ScSB in the large-Nc limit is shown in Fig. 1.
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hȳyi 6= 0 in the massless limit m ! 0 after taking the large-volume limit V ! •.

On the other hand, for QCD in the e-regime, the ScSB is recognized by the agreement of the
low-lying Dirac spectrum with the prediction from cRMT.

In the case of large Nc gauge theory, the logic is as follows. First, we calculate the low-
lying Dirac spectrum of the large Nc gauge theory in a small box (e.g. on a 14 or 24 lattice) and
compare the spectrum with the prediction from cRMT. Here the probe mass mprobe must scale
as mprobe ⇠ 1/Na

c for large Nc, otherwise such that the cRMT limit is realized. Because of this
scaling, the EK equivalence, requiring Nc ! • with m fixed, can not be applied directly. However,
following the same logic as the QCD case except that V is now replaced with Na

c , the agreement of
the spectrum with the prediction from cRMT still establish the ScSB of the large Nc gauge theory
in a small box. Then the EK equivalence leads to the ScSB of the large Nc gauge theory in large

3

Nc ⇤ ⌅, then m ⇤ 0 (14)

� ⇧= 0 (15)

4.1 Di�erence of the limits

In order to compare the large-Nc gauge theory and ⇤RMT, we must understand the di⇥erence of
the limits, which are required for the large-Nc equivalence and the universality, respectively:

• When one compares the ⇤RMT with the gauge theory, the matrix size N of the ⇤RMT is
identified with the degrees of freedom in the gauge theory which are important for the low-
energy dynamics, N ⇥ V N�

c , where � is a constant which can depend on the representation
of the fermion in general. (As we will see, � = 1 for the probe adjoint representation in the
Eguchi-Kawai model.) In order for the universality to hold, mN ⇥ mVN�

c must be fixed as
we take the large-Nc limit. Let us call it as the “⇤RMT limit”.

• In order for the large-Nc equivalences (e.g. the Eguchi-Kawai equivalence) to hold, the
ordinary ’t Hooft large-Nc limit, in which m and V are fixed, must be taken.

The ⇤RMT limit is very di⇥erent from the ’t Hooft limit. Actually the standard ’t Hooft 1/Nc

counting explained in § 2 does not hold there. In order to see it, let us consider the connected
correlation function of the chiral condensate in the ⇤RMT (see e.g. [35])

⌃(⌅̄⌅)k/N⌥conn,RMT =

⇤
1

N

2N⇧

i=1

�
1

⇥i +m

⇥k
⌅

RMT

, (16)

where ⇥i are eigenvalues of the Dirac operator. In the ’t Hooft counting, it is of order N0. It is
true when m is of order one; then 1/(⇥i+m)k is of order one, and sum of 2N order-one quantities
is of order N1. However when m scales as 1/N , the smallest of ⇥i +m is also of order 1/N , and
hence the correlation function becomes of order Nk�1. This divergence corresponds to the infrared
divergence in usual SU(3) QCD. In the large-Nc field theories, this corresponds the divergence
with some power of Nc, which spoils the ’t Hooft counting.

This peculiar behavior can also be understood in terms of the large-Nc gauge theory; because
the coe⌅cients cg,b in (4) are functions of m and V , they can have nontrivial Nc-dependences in
the ⇤RMT limit, where m and V are scaled with Nc.

4.2 The comparison

First let us recall how one can confirm the chiral symmetry breakdown in the ordinary SU(3) QCD.
The criterion for the spontaneous chiral symmetry breaking is the nonzero chiral condensate in
the standard thermodynamic limit,

⌃⌅̄⌅⌥ ⇧= 0 in the massless limit m ⇤ 0 after the large-volume limit V ⇤ ⌅.
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m ! 0, then V ! 1 (8)

⇢(z), z = �V ⌃ ⇠ O(1) (9)

8 Conclusion
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original (parent) theory, we obtain a new (daughter) theory by performing a projection under some
discrete subgroup of the global symmetry of the parent theory. If the discrete symmetry does not
break down spontaneously, the correlation functions of invariant (neutral) sectors of operators in
both theories are equal up to a trivial rescaling factor.

Provided the chiral symmetry is spontaneously broken, the dynamics of QCD at below LQCD

can be described by the low-energy effective theory where the degrees of freedom are Goldston
bosons such as pions instead of quarks and gluons. If we go further inside the e-regime, where
the one-fourth of space-time volume is much smaller than the pion Compton length, the relevant
degrees of freedom are zero modes of pions and the density of Dirac eigenvalues near zero is related
to the chiral condensate S via Banks-Casher relation [11]. The distribution of the low-lying Dirac
eigenvalues can be calculated using the chiral random matrix theory (cRMT) in the microscopic
limit, N ! • while having mN fixed, where the matrix size N is identified by V in the standard
gauge theory (for a review, see [12]). In large Nc gauge theories, the number of color charges Nc

are also relevant degrees of freedom and the corresponding limit may be obtained by taking the
large Nc limit with a fixed mN ⇠ mV Na

c , where the constant a can depend on the representation of
fermions. Let us call this limit as the "cRMT limit" which is very different from the ’t Hooft limit:
the fermion mass scales with Nc and hence ch,B in Eq. 2.1 also has a nontrivial Nc-dependence
implying that the ’t Hooft power counting rules are not valid. Because of this difference, the large
Nc equivalences do not hold in the cRMT limit. In the next section, however, we argue that the EK
equivalence and the cRMT combined with lattice simulations can simultaneously be used to detect
the ScSB in QCD-like theories.

lV Na
c (2.2)

L � 1/LQCD (2.3)

L ⌧ 1/mp (2.4)

mqV S : fixed, V ! • (2.5)

(2.6)

W is N ⇥N complex matrix

3. Strategy of detecting the spontaneous chiral symmetry breaking

In this section we establish the way to use the cRMT in large Nc gauge theory for detection
of the ScSB. First let us recall how one can confirm the chiral symmetry breakdown in the or-
dinary SU(3) QCD. The criterion for the ScSB is the nonzero chiral condensate in the standard
thermodynamic limit,

hȳyi 6= 0 in the massless limit m ! 0 after taking the large-volume limit V ! •.

On the other hand, for QCD in the e-regime, the ScSB is recognized by the agreement of the
low-lying Dirac spectrum with the prediction from cRMT.

In the case of large Nc gauge theory, the logic is as follows. First, we calculate the low-
lying Dirac spectrum of the large Nc gauge theory in a small box (e.g. on a 14 or 24 lattice) and
compare the spectrum with the prediction from cRMT. Here the probe mass mprobe must scale
as mprobe ⇠ 1/Na

c for large Nc, otherwise such that the cRMT limit is realized. Because of this
scaling, the EK equivalence, requiring Nc ! • with m fixed, can not be applied directly. However,
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we plot the spacings of low-lying Dirac eigenvalues lk (ensemble averaged) multiplied by Nc for
Nc = 8,12,16. From the figure, we see a nice agreement between the spacings at up to k = 2 for
Nc = 8 and at up to k = 3 for Nc = 12. A nice agreement for the lowest few eigenvalues implies
that the Dirac eigenvalues near zero, which are expected to agree with cRMT preeiction, scale
as Nc and thus a = 1. We also found that the spectral density r(z) is nearly zero at between the
(Nc �1)th and Ncth eigenvalues.

A possible explanation of our founding for the Nc scaling of Dirac eigenvalues may rely on
the perturbative analysis in the background of diagonal Wilson lines [15]. In a compact space,
one cannot gauge away zero-momentum modes and thus the low-lying Dirac spectrum might be
determined by the zero modes. For fermion in the adjoint representation, the number of zero modes
of the Wilson lines is (Nc �1) 3 while the total degrees of freedom is N2

c . As a result, the low-lying
Dirac eigenvalues should scale as Nc, which is consistent with our numerical results. Interestingly,
our counting of zero modes also agrees with the position at which r(z) ⇠ 0.

5. Conclusion and outlook

In this proceeding, we discussed about the ’t Hooft limit and cRMT limit in large-Nc gauge
theories: in general two limits are not compatible and the large-Nc equivalences do not hold in
cRMT limit. In spite of the difference of these two limits, the ScSB can be detected by taking
an indirect path from cRMT limit of EK model to the large volume lattice theory in the ’t Hooft
limit. As a numerical demonstration, we performed lattice simulations of SU(Nc) gauge theory
with two heavy adjoint fermions on a 24 lattice. After confirming that the volume equivalence is
valid (unbroken center symmetry), we found that the distributions of low-lying Dirac eigenvalues
are in good agreement with the cRMT prediction and thus the chiral symmetry of the quenched
QCD is spontaneously broken. In the near future, we hope to determine whether the large-Nc

dynamical two-flavor adjoint QCD goes through the ScSB or not, with an application to walking
Technicolor theories in mind.
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In the large-Nc ‘t Hooft limit,

To establish the method, we numerically study the quenched 
approximation, where the answer is known.
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(m0~1/a) on a 24 lattice 
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thus the EK equivalence holds.

Adjoint fermions are not dynamical.
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gauge symmetry:

center symmetry:

2 Volume Reduced Theory

Lattice action, Dirac operator, ...

3 Simulation Details

types of fermions, parameters, ensembles, observables, ...
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where the gauge action is given by

Sgauge = 2Ncb
X

x

X

µ<�

ReTrUplaq
µ� (2)

where

b =
1

g2Nc
. (3)

The Wilson-Dirac operator is

DW = 1� ⇥

2

4
4X

µ=1

(1� �µ)U
adj
µ + (1 + �µ)U

†adj
µ

3

5 , (4)

where

⇥ =
1
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The theory has a Z4
N center symmetry as

Uµ �⇤ zn�Uµ, (6)

where z = exp(2i⇤/N) and 0 ⇥ nµ < N are integers.
In 24 lattice, the Polyakov loop may be given by
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4 Numerical Results: Z4
Nc
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The non-trivial condition of the usage of the large Nc equvalence is that the Z4
Nc
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of the reduced volume theory must be unbroken. Some evidences of whether center symmetry is
unbroken are as follows: (1) the Polyakov loop scatters radially in the vicinity of origin in complex
plane, (2) the magnitude of the Polyakov loop approaches zero as Nc increases where the predicted
asypmtotic scaling behavior is 1/Nc, (3) the average plaquette value measured from the reduced
model agrees with that measured from the larage volume lattice gauge theory. In this section,
we present our findings for SU(Nc) gauge theory without adjoint fermions and with two heavy
adjoint fermions.
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⇥
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⇥
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The adjoint fermions with heavy masses play an important role for the restoration of the center
symmetry. Since the EK volume equivalence is only valid for the same lattice parameters, such
as the bare coupling and the fermions mass, the equivalent larege volume theory has also large
fermions mass as in EK model. In standard lattice gaughe theory the heavy fermions are not
dynamical and can be integrated out. Therefore, the theory is approximately quenched theory
and thus the ChRMT we are considering for comparison is one for quenched theory.
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Action and Symmetries

Periodic B.C.

2 Volume Reduced Theory

Lattice action, Dirac operator, ...

3 Simulation Details

types of fermions, parameters, ensembles, observables, ...
The partition function of the reduced model is

Zreduced =

Z Y

µ

DUµD⇧D⇧̄ exp

0

@Sgauge +

NfX

j=1

X

x

⇧̄j(x)DW⇧j(x)

1

A (1)

where the gauge action is given by

Sgauge = 2Ncb
X

x

X

µ<�

ReTrUplaq
µ� , (2)

Sgauge = 2Ncb
X

x

X

µ<�

ReTrUµ(x)U�(x+ µ)U †
µ(x+ µ+ ⇤)U †

� (x+ ⇤), (3)

where

b =
1

g2N
. (4)

The Wilson-Dirac operator is

DW = 1� ⇥

2

4
4X

µ=1

(1� �µ)U
adj
µ + (1 + �µ)U

†adj
µ

3

5 , (5)

where

⇥ =
1

2(m+ 4)
. (6)

The theory has a Z4
N center symmetry as

Uµ �⇤ znµUµ, (7)

where z = exp(2i⌅/N) and 0 ⇥ nµ < N are integers.

Unµ ⇤ e2⇥inµ/NcUnµ, nµ ⌅ ZN (8)

Unµ ⇤ �nUnµ�
†
n+µ, �n ⌅ SU(N) (9)

In 24 lattice, the Polyakov loop may be given by

Pµ(x) =
1

Nc
trUµ(x)Uµ(x+ µ). (10)

3

9

⇤k ⇥
N

8
(22)

⌃⇧̄⇧⌥ ⇤ N2 (23)

z (24)

⌅(z) (25)

� ⇧= 0 (26)

Sg = 2N2b
↵

n

↵

µ<�

�
1� 1

N
ReTrPµ�(n)

⇥
, (27)

Sf =
2↵

j=1

↵

n

⇧n,j

⇤

 1� ⇥

⇧

⌥
4↵

µ=1

(1� �µ)U
adj
n,µ⇧n+µ,j + (1 + �µ)U

†,adj
n�µ,µ⇧n�µ,j

⌃

�

⌅

⌦ . (28)

Zreduced =

� �

µ

DUµD⇧D⇧ exp (Sg + Sf ) , n ⌅ 24 (29)
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• Symmetries

gauge symmetry:

center symmetry:

2 Volume Reduced Theory

Lattice action, Dirac operator, ...

3 Simulation Details

types of fermions, parameters, ensembles, observables, ...
The partition function of the reduced model is

Zreduced =

Z Y

µ

DUµD⌅D⌅̄ exp

0

@Sgauge +

NfX

j=1

X

x

⌅̄j(x)DW⌅j(x)

1

A (1)

where the gauge action is given by

Sgauge = 2Ncb
X

x

X

µ<�

ReTrUplaq
µ� (2)

where

b =
1

g2Nc
. (3)

The Wilson-Dirac operator is

DW = 1� ⇥

2

4
4X

µ=1

(1� �µ)U
adj
µ + (1 + �µ)U

†adj
µ

3

5 , (4)

where

⇥ =
1

2(m+ 4)
. (5)

The theory has a Z4
N center symmetry as

Uµ �⇤ zn�Uµ, (6)

where z = exp(2i⇤/N) and 0 ⇥ nµ < N are integers.
In 24 lattice, the Polyakov loop may be given by

Pµ(x) =
1

Nc
trUµ(x)Uµ(x+ µ). (7)

4 Numerical Results: Z4
Nc

Center Symmetry

The non-trivial condition of the usage of the large Nc equvalence is that the Z4
Nc

center symmetry
of the reduced volume theory must be unbroken. Some evidences of whether center symmetry is
unbroken are as follows: (1) the Polyakov loop scatters radially in the vicinity of origin in complex
plane, (2) the magnitude of the Polyakov loop approaches zero as Nc increases where the predicted
asypmtotic scaling behavior is 1/Nc, (3) the average plaquette value measured from the reduced
model agrees with that measured from the larage volume lattice gauge theory. In this section,
we present our findings for SU(Nc) gauge theory without adjoint fermions and with two heavy
adjoint fermions.

3

23

Wilson gauge and fermion action

   Symmetries:

       gauge:

       center !ZN"#:

Sgauge = 2Nb
�

µ<�

ReTrUµU�U†
µU†

� , b = 1/(g2N)

Uµ �⇥ �Uµ�† (all µ) � ⇤ SU(N)

Uµ �⇥ Uµe2�inµ/N nµ ⇤ ZN

SF =
X

j=1,Nf

⇤̄jDW⇤j

DW = 1� ⇥
4X

µ=1

⇥
(1� �µ)U

adj
µ + (1 + �µ)U

† adj
µ

⇤

2 Volume Reduced Theory

Lattice action, Dirac operator, ...

3 Simulation Details

types of fermions, parameters, ensembles, observables, ...
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Simulation details
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Fermions, Parameters, and Algorithm

heavy Wilson fermions in adjoint rep. (kappa=0.09)

• fermions in action

• probe fermions
massless overlap fermions in adjoint rep.

• number of colors up to Nc=16

• bare coupling b = 0.1, 0.2, 0.3, 0.4, 0.5
strong weak

• Hybrid Monte Carlo (HMC) algorithm
500 configs (10 trajectories) for each ensemble

200 trajectories for thermalization

unbroken center 
symmetry

good chiral 
symmetry

quenched simulation (kappa=0)

10

closer to RMT 
limit



Tests of the Center Symmetry

(1)  Polyakov loop scatters radially in the vicinity of the origin.

(2) Magnitude of the Polyakov loop goes to zero in the large Nc limit.

If the (ZNc)4 center symmetry is unbroken, 

(3) Average plaquette value agrees with that of the large volume
       theory in the large Nc limit.

2 Volume Reduced Theory

Lattice action, Dirac operator, ...

3 Simulation Details

types of fermions, parameters, ensembles, observables, ...
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N center symmetry as

Uµ �! znµUµ, (8)

where z = exp(2i⇡/N) and 0  nµ < N are integers.

Un,µ ! e2⇡inµ/NcUn,µ, nµ 2 ZN (9)

Un,µ ! ⌦nUn,µ⌦
†
n+µ, ⌦n 2 SU(N) (10)
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Figure 7: Dirac spectrum

The adjoint fermions with heavy masses play an important role for the restoration of the center
symmetry. Since the EK volume equivalence is only valid for the same lattice parameters, such
as the bare coupling and the fermions mass, the equivalent larege volume theory has also large
fermions mass as in EK model. In standard lattice gaughe theory the heavy fermions are not
dynamical and can be integrated out. Therefore, the theory is approximately quenched theory
and thus the ChRMT we are considering for comparison is one for quenched theory.

The adjoint QCD with any number of flavors is belonged to the universal class of the Chi-
ral Gaussian Sympletic Ensemble (ChGSE). However, we also consider other two universal classes,
Chiral Gaussian Orthogonal Ensemble (ChGOE) and Ghiral Gaussian Unitary Ensemble (ChGUE),
in order to make the comparison manifest. The ChRMT predictions of the distribution of the
lowest eigenvlue are

P (z) = (6)

and those of the spectral density are
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Polyakov Loops - Nf =0(Quenched)

Center Symmetry is broken at weak coupling limit.

Center Symmetry is 
restored in the 
strong coupling limit.

For 
Nc = 8,

23

Wilson gauge and fermion action

   Symmetries:

       gauge:

       center (ZN)4:

Sgauge = 2Nb
�

µ<�

ReTrUµU�U†
µU†

� , b = 1/(g2N)

Uµ �⇥ �Uµ�† (all µ) � ⇤ SU(N)

Uµ �⇥ Uµe2�inµ/N nµ ⇤ ZN

SF =
X

j=1,Nf

⇤̄jDW⇤j

DW = 1� ⇥
4X

µ=1

⇥
(1� �µ)U

adj
µ + (1 + �µ)U

† adj
µ

⇤
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Figure 1: Scatter plots of the Polyakov loops for b = 0.5 without adjoint fermions. The number
of colors are Nc = 4, 8, and 16 for left, middle, and right, respectively.
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Figure 2: Scatter plots of the Polyakov loops for Nc = 8 without adjoint fermions. The values of
the couplings are b = 0.3 and 0.4 for left and right, respectively.

center symmetry breaking patterns where the Polyakov loops are localized at the elements of the
center of SU(Nc), 2inµ⇡/Nc with nµ = 0, 1, · · · , Nc�1. For given size of configurations, we found
that the number of clusters decreases to one as we increase the number of colors Nc from 5 to 16;
the tunneling transitions between di↵erent center phases will eventually disappear at Nc ! 1.

For Nc = 8, we perform two more simulations with smaller values of b whose results of the
Polyakov loops are shown in Fig. 2. For b = 0.3 the Polyakov loops develop a cluster around the
origin, while for b = 0.4 they spread out and are localized at the center phases like as for b = 0.5
. As a result, the center symmetry is restored at the coupling between b = 0.3 and b = 0.4, which
is consistent with the results in [14].

In Fig. 3, we plotted average plaquette values for Nc up to 16. For these calculations, we used
140� 600 sizes of ensembles for 10 values of Nc and the Bootstrapping technique to estimate the
statistical uncertainties. The measured plaquette values scale as 1/N2

c and thus we performe a
fit to the data using a constant plus quadratic function of Nc (red solid line in the figure). We
obtained u(1) = 0.72733(12) from this infinite Nc exrapolation, which is higher than 0.7182, the
value from large volume lattice gauge theory [2]. As a result, the large Nc volume reduction for
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Figure 1: Scatter plots of the Polyakov loops for b = 0.5 without adjoint fermions. The number
of colors are Nc = 2, 8, and 16 for left, middle, and right, respectively.

2 Volume Reduced Theory

Lattice action, Dirac operator, ...

3 Simulation Details

types of fermions, parameters, ensembles, observables, ...
In 24 lattice, the Polyakov loop may be given by

Pµ(x0) =
1

Nc
trUµ(x0)Uµ(x0 + µ), (1)

where x0 can be any site whose µ component is zero.

4 Numerical Results: Z4
Nc

Center Symmetry

The non-trivial condition of the usage of the large Nc equvalence is that the Z4
Nc

center symmetry
of the reduced volume theory must be unbroken. Some evidences of whether center symmetry is
unbroken are as follows: (1) the Polyakov loop scatters radially in the vicinity of origin in complex
plane, (2) the magnitude of the Polyakov loop approaches zero as Nc increases where the predicted
asypmtotic scaling behavior is 1/Nc, (3) the average plaquette value measured from the reduced
model agrees with that measured from the larage volume lattice gauge theory. In this section,
we present our findings for SU(Nc) gauge theory without adjoint fermions and with two heavy
adjoint fermions.

4.1 SU(Nc) without adjoint fermions

The reduced model of pure four-dimensional Euclidean Yang-Mills theory is not our target theory.
Nevertheless, it is still instructive to understand the breaking of center symmetry and provides a
nontrivial check of our simulation code by reproducing known results, i.e. the center symmetry

3
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Figure 7: Dirac spectrum

The adjoint fermions with heavy masses play an important role for the restoration of the center
symmetry. Since the EK volume equivalence is only valid for the same lattice parameters, such
as the bare coupling and the fermions mass, the equivalent larege volume theory has also large
fermions mass as in EK model. In standard lattice gaughe theory the heavy fermions are not
dynamical and can be integrated out. Therefore, the theory is approximately quenched theory
and thus the ChRMT we are considering for comparison is one for quenched theory.

The adjoint QCD with any number of flavors is belonged to the universal class of the Chi-
ral Gaussian Sympletic Ensemble (ChGSE). However, we also consider other two universal classes,
Chiral Gaussian Orthogonal Ensemble (ChGOE) and Ghiral Gaussian Unitary Ensemble (ChGUE),
in order to make the comparison manifest. The ChRMT predictions of the distribution of the
lowest eigenvlue are

P (z) = (6)

and those of the spectral density are
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The relevant symmetries of ZAEK are the same as those
of the original EK model. They are the remnant of the
gauge symmetry

8 !: U! ! !U!!
y with ! 2 SUðNÞ; (3.5)

as well as center transformations applied independently to
the four link matrices

U! ! U!z
n! with z ¼ e2"i=N and n! 2 ZN:

(3.6)

As explained in Sec. I, large-N equivalence holds as
long as the ðZNÞ4 symmetry in Eq. (3.6) is unbroken. We
recall here how this equivalence works in detail. This
equivalence states that appropriate expectation values in
the reduced theory become identical whenN ! 1 to those
in the infinite-volume theory defined by Eq. (2.1).
Appropriate expectation values in the large-volume theory
are the connected correlators of ðZNÞ4-invariant and
translation-invariant operators. These are mapped into op-
erators in the reduced theory following the prescription of
Refs. [2,6]. For example, consider the large-volume expec-
tation value of the plaquette,

u $ 1

N

1

NP

X

P

htrUPiZadj
: (3.7)

The notation h; iZadj
means that we calculate expectation

values in the ensemble defined by the partition function in
Eq. (2.1). NP is the number of plaquettes, which in four
dimensions is equal to 6L4. The corresponding single-site
expectation value is

ured $
1

N

1

6

X

!<#

htrU!U#U
y
!U

y
# iZAEK

(3.8)

so that, in fact,

ured ¼ uðL ¼ 1Þ: (3.9)

The meaning of volume reduction is that

uðb;$Þ ¼ uredðb;$Þ (3.10)

when N ! 1 in both theories.
Our aim in this paper is to find the regions of the b% $

plane in which the ground state of the single-site model is
invariant under the ðZNÞ4 center symmetry, so that equiv-
alences of the form of Eq. (3.10) hold. We first collect what
is known about the single-site theory, together with some
conjectures, into a phase diagram.

For infinitely massive fermions (i.e. for $ ¼ 0), our
theory becomes the original EK model. This is known to
break the ðZNÞ4 symmetry for b > bEK & 0:19 and numeri-
cal evidence suggests that the transition is first order

[8,10,42]. A crucial issue is then whether, for b > bEK,
an increase in $ can lead to the restoration of the center
symmetry. This is what one would expect based on the
results of Refs. [6,14]. Specifically, Ref. [14] studied a
lattice theory similar to Eq. (3.1) but in which only one
of the Euclidean dimensions is reduced to a point. This
weak-coupling calculation found that, for the Nf ¼ 1 the-
ory, the center symmetry is broken for $ ¼ 0, but restored
once $ * 0:04. There is, in addition, a small intermediate
phase between the two in which the ZN symmetry is broken
down to a Z2 subgroup. Finally, when $ grows even more,
to values above '1:4, the ZN symmetry is completely
broken again.
It is unclear how the fact that in the current paper we

study a theory where all lattice directions are reduced to a
point changes the results of Ref. [14]. Nevertheless, assum-
ing that the results of Ref. [14] provide a qualitative guide,
we are led to conjecture the phase diagram shown in Fig. 2.
In the following we describe the features of this diagram.
First, consider the solid (black) line which begins at

bEK ' 0:19 on the b axis, bends up, and ends on the top
of the diagram. Our conjecture is that this separates a
center symmetry-broken phase to the left (shown shaded)
from an unbroken phase to the right. This is based on what
we know about the EK model, and the assumption that the
results of Ref. [14] apply qualitatively to our model. (Note
that there can only be a phase transition when N ! 1,
while for finite N this will be smoothed out into a cross-
over.) It is possible that this line actually has a nonzero
width and contains intermediate partially broken phases.4
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0
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κc(b)
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~0.19
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FIG. 2 (color online). Conjectured phase diagram for the
single-site model in the large-N limit. Details are discussed in
the text.

4For example, this was seen in Ref. [42] at $ ¼ 0.
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In the following we describe the features of this diagram.
First, consider the solid (black) line which begins at

bEK ' 0:19 on the b axis, bends up, and ends on the top
of the diagram. Our conjecture is that this separates a
center symmetry-broken phase to the left (shown shaded)
from an unbroken phase to the right. This is based on what
we know about the EK model, and the assumption that the
results of Ref. [14] apply qualitatively to our model. (Note
that there can only be a phase transition when N ! 1,
while for finite N this will be smoothed out into a cross-
over.) It is possible that this line actually has a nonzero
width and contains intermediate partially broken phases.4
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long as the ðZNÞ4 symmetry in Eq. (3.6) is unbroken. We
recall here how this equivalence works in detail. This
equivalence states that appropriate expectation values in
the reduced theory become identical whenN ! 1 to those
in the infinite-volume theory defined by Eq. (2.1).
Appropriate expectation values in the large-volume theory
are the connected correlators of ðZNÞ4-invariant and
translation-invariant operators. These are mapped into op-
erators in the reduced theory following the prescription of
Refs. [2,6]. For example, consider the large-volume expec-
tation value of the plaquette,
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Eq. (2.1). NP is the number of plaquettes, which in four
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expectation value is
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so that, in fact,

ured ¼ uðL ¼ 1Þ: (3.9)

The meaning of volume reduction is that

uðb;$Þ ¼ uredðb;$Þ (3.10)

when N ! 1 in both theories.
Our aim in this paper is to find the regions of the b% $

plane in which the ground state of the single-site model is
invariant under the ðZNÞ4 center symmetry, so that equiv-
alences of the form of Eq. (3.10) hold. We first collect what
is known about the single-site theory, together with some
conjectures, into a phase diagram.

For infinitely massive fermions (i.e. for $ ¼ 0), our
theory becomes the original EK model. This is known to
break the ðZNÞ4 symmetry for b > bEK & 0:19 and numeri-
cal evidence suggests that the transition is first order

[8,10,42]. A crucial issue is then whether, for b > bEK,
an increase in $ can lead to the restoration of the center
symmetry. This is what one would expect based on the
results of Refs. [6,14]. Specifically, Ref. [14] studied a
lattice theory similar to Eq. (3.1) but in which only one
of the Euclidean dimensions is reduced to a point. This
weak-coupling calculation found that, for the Nf ¼ 1 the-
ory, the center symmetry is broken for $ ¼ 0, but restored
once $ * 0:04. There is, in addition, a small intermediate
phase between the two in which the ZN symmetry is broken
down to a Z2 subgroup. Finally, when $ grows even more,
to values above '1:4, the ZN symmetry is completely
broken again.
It is unclear how the fact that in the current paper we

study a theory where all lattice directions are reduced to a
point changes the results of Ref. [14]. Nevertheless, assum-
ing that the results of Ref. [14] provide a qualitative guide,
we are led to conjecture the phase diagram shown in Fig. 2.
In the following we describe the features of this diagram.
First, consider the solid (black) line which begins at

bEK ' 0:19 on the b axis, bends up, and ends on the top
of the diagram. Our conjecture is that this separates a
center symmetry-broken phase to the left (shown shaded)
from an unbroken phase to the right. This is based on what
we know about the EK model, and the assumption that the
results of Ref. [14] apply qualitatively to our model. (Note
that there can only be a phase transition when N ! 1,
while for finite N this will be smoothed out into a cross-
over.) It is possible that this line actually has a nonzero
width and contains intermediate partially broken phases.4
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U! ! U!z
n! with z ¼ e2"i=N and n! 2 ZN:

(3.6)

As explained in Sec. I, large-N equivalence holds as
long as the ðZNÞ4 symmetry in Eq. (3.6) is unbroken. We
recall here how this equivalence works in detail. This
equivalence states that appropriate expectation values in
the reduced theory become identical whenN ! 1 to those
in the infinite-volume theory defined by Eq. (2.1).
Appropriate expectation values in the large-volume theory
are the connected correlators of ðZNÞ4-invariant and
translation-invariant operators. These are mapped into op-
erators in the reduced theory following the prescription of
Refs. [2,6]. For example, consider the large-volume expec-
tation value of the plaquette,

u $ 1

N

1

NP

X

P

htrUPiZadj
: (3.7)

The notation h; iZadj
means that we calculate expectation

values in the ensemble defined by the partition function in
Eq. (2.1). NP is the number of plaquettes, which in four
dimensions is equal to 6L4. The corresponding single-site
expectation value is

ured $
1

N

1
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X

!<#

htrU!U#U
y
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y
# iZAEK

(3.8)

so that, in fact,

ured ¼ uðL ¼ 1Þ: (3.9)

The meaning of volume reduction is that

uðb;$Þ ¼ uredðb;$Þ (3.10)

when N ! 1 in both theories.
Our aim in this paper is to find the regions of the b% $

plane in which the ground state of the single-site model is
invariant under the ðZNÞ4 center symmetry, so that equiv-
alences of the form of Eq. (3.10) hold. We first collect what
is known about the single-site theory, together with some
conjectures, into a phase diagram.

For infinitely massive fermions (i.e. for $ ¼ 0), our
theory becomes the original EK model. This is known to
break the ðZNÞ4 symmetry for b > bEK & 0:19 and numeri-
cal evidence suggests that the transition is first order

[8,10,42]. A crucial issue is then whether, for b > bEK,
an increase in $ can lead to the restoration of the center
symmetry. This is what one would expect based on the
results of Refs. [6,14]. Specifically, Ref. [14] studied a
lattice theory similar to Eq. (3.1) but in which only one
of the Euclidean dimensions is reduced to a point. This
weak-coupling calculation found that, for the Nf ¼ 1 the-
ory, the center symmetry is broken for $ ¼ 0, but restored
once $ * 0:04. There is, in addition, a small intermediate
phase between the two in which the ZN symmetry is broken
down to a Z2 subgroup. Finally, when $ grows even more,
to values above '1:4, the ZN symmetry is completely
broken again.
It is unclear how the fact that in the current paper we

study a theory where all lattice directions are reduced to a
point changes the results of Ref. [14]. Nevertheless, assum-
ing that the results of Ref. [14] provide a qualitative guide,
we are led to conjecture the phase diagram shown in Fig. 2.
In the following we describe the features of this diagram.
First, consider the solid (black) line which begins at

bEK ' 0:19 on the b axis, bends up, and ends on the top
of the diagram. Our conjecture is that this separates a
center symmetry-broken phase to the left (shown shaded)
from an unbroken phase to the right. This is based on what
we know about the EK model, and the assumption that the
results of Ref. [14] apply qualitatively to our model. (Note
that there can only be a phase transition when N ! 1,
while for finite N this will be smoothed out into a cross-
over.) It is possible that this line actually has a nonzero
width and contains intermediate partially broken phases.4
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            fermions in adjoint representation with periodic boundary conditions

stabilized center symmetry

single-site EK with Nf=1,2 adj. fermions

(ZNc)4 center symmetry is unbroken 
even at weak coupling & heavy fermions

The relevant symmetries of ZAEK are the same as those
of the original EK model. They are the remnant of the
gauge symmetry

8 !: U! ! !U!!
y with ! 2 SUðNÞ; (3.5)

as well as center transformations applied independently to
the four link matrices

U! ! U!z
n! with z ¼ e2"i=N and n! 2 ZN:

(3.6)

As explained in Sec. I, large-N equivalence holds as
long as the ðZNÞ4 symmetry in Eq. (3.6) is unbroken. We
recall here how this equivalence works in detail. This
equivalence states that appropriate expectation values in
the reduced theory become identical whenN ! 1 to those
in the infinite-volume theory defined by Eq. (2.1).
Appropriate expectation values in the large-volume theory
are the connected correlators of ðZNÞ4-invariant and
translation-invariant operators. These are mapped into op-
erators in the reduced theory following the prescription of
Refs. [2,6]. For example, consider the large-volume expec-
tation value of the plaquette,

u $ 1

N

1

NP

X

P

htrUPiZadj
: (3.7)

The notation h; iZadj
means that we calculate expectation

values in the ensemble defined by the partition function in
Eq. (2.1). NP is the number of plaquettes, which in four
dimensions is equal to 6L4. The corresponding single-site
expectation value is

ured $
1
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# iZAEK

(3.8)

so that, in fact,

ured ¼ uðL ¼ 1Þ: (3.9)

The meaning of volume reduction is that

uðb;$Þ ¼ uredðb;$Þ (3.10)

when N ! 1 in both theories.
Our aim in this paper is to find the regions of the b% $

plane in which the ground state of the single-site model is
invariant under the ðZNÞ4 center symmetry, so that equiv-
alences of the form of Eq. (3.10) hold. We first collect what
is known about the single-site theory, together with some
conjectures, into a phase diagram.

For infinitely massive fermions (i.e. for $ ¼ 0), our
theory becomes the original EK model. This is known to
break the ðZNÞ4 symmetry for b > bEK & 0:19 and numeri-
cal evidence suggests that the transition is first order

[8,10,42]. A crucial issue is then whether, for b > bEK,
an increase in $ can lead to the restoration of the center
symmetry. This is what one would expect based on the
results of Refs. [6,14]. Specifically, Ref. [14] studied a
lattice theory similar to Eq. (3.1) but in which only one
of the Euclidean dimensions is reduced to a point. This
weak-coupling calculation found that, for the Nf ¼ 1 the-
ory, the center symmetry is broken for $ ¼ 0, but restored
once $ * 0:04. There is, in addition, a small intermediate
phase between the two in which the ZN symmetry is broken
down to a Z2 subgroup. Finally, when $ grows even more,
to values above '1:4, the ZN symmetry is completely
broken again.
It is unclear how the fact that in the current paper we

study a theory where all lattice directions are reduced to a
point changes the results of Ref. [14]. Nevertheless, assum-
ing that the results of Ref. [14] provide a qualitative guide,
we are led to conjecture the phase diagram shown in Fig. 2.
In the following we describe the features of this diagram.
First, consider the solid (black) line which begins at

bEK ' 0:19 on the b axis, bends up, and ends on the top
of the diagram. Our conjecture is that this separates a
center symmetry-broken phase to the left (shown shaded)
from an unbroken phase to the right. This is based on what
we know about the EK model, and the assumption that the
results of Ref. [14] apply qualitatively to our model. (Note
that there can only be a phase transition when N ! 1,
while for finite N this will be smoothed out into a cross-
over.) It is possible that this line actually has a nonzero
width and contains intermediate partially broken phases.4
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theory becomes the original EK model. This is known to
break the ðZNÞ4 symmetry for b > bEK & 0:19 and numeri-
cal evidence suggests that the transition is first order

[8,10,42]. A crucial issue is then whether, for b > bEK,
an increase in $ can lead to the restoration of the center
symmetry. This is what one would expect based on the
results of Refs. [6,14]. Specifically, Ref. [14] studied a
lattice theory similar to Eq. (3.1) but in which only one
of the Euclidean dimensions is reduced to a point. This
weak-coupling calculation found that, for the Nf ¼ 1 the-
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once $ * 0:04. There is, in addition, a small intermediate
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down to a Z2 subgroup. Finally, when $ grows even more,
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study a theory where all lattice directions are reduced to a
point changes the results of Ref. [14]. Nevertheless, assum-
ing that the results of Ref. [14] provide a qualitative guide,
we are led to conjecture the phase diagram shown in Fig. 2.
In the following we describe the features of this diagram.
First, consider the solid (black) line which begins at

bEK ' 0:19 on the b axis, bends up, and ends on the top
of the diagram. Our conjecture is that this separates a
center symmetry-broken phase to the left (shown shaded)
from an unbroken phase to the right. This is based on what
we know about the EK model, and the assumption that the
results of Ref. [14] apply qualitatively to our model. (Note
that there can only be a phase transition when N ! 1,
while for finite N this will be smoothed out into a cross-
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(ZNc)4 center symmetry is unbroken 
even at weak coupling & heavy fermions

The relevant symmetries of ZAEK are the same as those
of the original EK model. They are the remnant of the
gauge symmetry

8 !: U! ! !U!!
y with ! 2 SUðNÞ; (3.5)

as well as center transformations applied independently to
the four link matrices

U! ! U!z
n! with z ¼ e2"i=N and n! 2 ZN:

(3.6)

As explained in Sec. I, large-N equivalence holds as
long as the ðZNÞ4 symmetry in Eq. (3.6) is unbroken. We
recall here how this equivalence works in detail. This
equivalence states that appropriate expectation values in
the reduced theory become identical whenN ! 1 to those
in the infinite-volume theory defined by Eq. (2.1).
Appropriate expectation values in the large-volume theory
are the connected correlators of ðZNÞ4-invariant and
translation-invariant operators. These are mapped into op-
erators in the reduced theory following the prescription of
Refs. [2,6]. For example, consider the large-volume expec-
tation value of the plaquette,

u $ 1

N

1

NP

X

P

htrUPiZadj
: (3.7)

The notation h; iZadj
means that we calculate expectation

values in the ensemble defined by the partition function in
Eq. (2.1). NP is the number of plaquettes, which in four
dimensions is equal to 6L4. The corresponding single-site
expectation value is

ured $
1

N

1

6

X

!<#

htrU!U#U
y
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y
# iZAEK

(3.8)

so that, in fact,

ured ¼ uðL ¼ 1Þ: (3.9)

The meaning of volume reduction is that

uðb;$Þ ¼ uredðb;$Þ (3.10)

when N ! 1 in both theories.
Our aim in this paper is to find the regions of the b% $

plane in which the ground state of the single-site model is
invariant under the ðZNÞ4 center symmetry, so that equiv-
alences of the form of Eq. (3.10) hold. We first collect what
is known about the single-site theory, together with some
conjectures, into a phase diagram.

For infinitely massive fermions (i.e. for $ ¼ 0), our
theory becomes the original EK model. This is known to
break the ðZNÞ4 symmetry for b > bEK & 0:19 and numeri-
cal evidence suggests that the transition is first order

[8,10,42]. A crucial issue is then whether, for b > bEK,
an increase in $ can lead to the restoration of the center
symmetry. This is what one would expect based on the
results of Refs. [6,14]. Specifically, Ref. [14] studied a
lattice theory similar to Eq. (3.1) but in which only one
of the Euclidean dimensions is reduced to a point. This
weak-coupling calculation found that, for the Nf ¼ 1 the-
ory, the center symmetry is broken for $ ¼ 0, but restored
once $ * 0:04. There is, in addition, a small intermediate
phase between the two in which the ZN symmetry is broken
down to a Z2 subgroup. Finally, when $ grows even more,
to values above '1:4, the ZN symmetry is completely
broken again.
It is unclear how the fact that in the current paper we

study a theory where all lattice directions are reduced to a
point changes the results of Ref. [14]. Nevertheless, assum-
ing that the results of Ref. [14] provide a qualitative guide,
we are led to conjecture the phase diagram shown in Fig. 2.
In the following we describe the features of this diagram.
First, consider the solid (black) line which begins at

bEK ' 0:19 on the b axis, bends up, and ends on the top
of the diagram. Our conjecture is that this separates a
center symmetry-broken phase to the left (shown shaded)
from an unbroken phase to the right. This is based on what
we know about the EK model, and the assumption that the
results of Ref. [14] apply qualitatively to our model. (Note
that there can only be a phase transition when N ! 1,
while for finite N this will be smoothed out into a cross-
over.) It is possible that this line actually has a nonzero
width and contains intermediate partially broken phases.4
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down to a Z2 subgroup. Finally, when $ grows even more,
to values above '1:4, the ZN symmetry is completely
broken again.
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8 !: U! ! !U!!
y with ! 2 SUðNÞ; (3.5)

as well as center transformations applied independently to
the four link matrices

U! ! U!z
n! with z ¼ e2"i=N and n! 2 ZN:

(3.6)

As explained in Sec. I, large-N equivalence holds as
long as the ðZNÞ4 symmetry in Eq. (3.6) is unbroken. We
recall here how this equivalence works in detail. This
equivalence states that appropriate expectation values in
the reduced theory become identical whenN ! 1 to those
in the infinite-volume theory defined by Eq. (2.1).
Appropriate expectation values in the large-volume theory
are the connected correlators of ðZNÞ4-invariant and
translation-invariant operators. These are mapped into op-
erators in the reduced theory following the prescription of
Refs. [2,6]. For example, consider the large-volume expec-
tation value of the plaquette,
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The notation h; iZadj
means that we calculate expectation
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so that, in fact,

ured ¼ uðL ¼ 1Þ: (3.9)

The meaning of volume reduction is that

uðb;$Þ ¼ uredðb;$Þ (3.10)

when N ! 1 in both theories.
Our aim in this paper is to find the regions of the b% $

plane in which the ground state of the single-site model is
invariant under the ðZNÞ4 center symmetry, so that equiv-
alences of the form of Eq. (3.10) hold. We first collect what
is known about the single-site theory, together with some
conjectures, into a phase diagram.

For infinitely massive fermions (i.e. for $ ¼ 0), our
theory becomes the original EK model. This is known to
break the ðZNÞ4 symmetry for b > bEK & 0:19 and numeri-
cal evidence suggests that the transition is first order

[8,10,42]. A crucial issue is then whether, for b > bEK,
an increase in $ can lead to the restoration of the center
symmetry. This is what one would expect based on the
results of Refs. [6,14]. Specifically, Ref. [14] studied a
lattice theory similar to Eq. (3.1) but in which only one
of the Euclidean dimensions is reduced to a point. This
weak-coupling calculation found that, for the Nf ¼ 1 the-
ory, the center symmetry is broken for $ ¼ 0, but restored
once $ * 0:04. There is, in addition, a small intermediate
phase between the two in which the ZN symmetry is broken
down to a Z2 subgroup. Finally, when $ grows even more,
to values above '1:4, the ZN symmetry is completely
broken again.
It is unclear how the fact that in the current paper we

study a theory where all lattice directions are reduced to a
point changes the results of Ref. [14]. Nevertheless, assum-
ing that the results of Ref. [14] provide a qualitative guide,
we are led to conjecture the phase diagram shown in Fig. 2.
In the following we describe the features of this diagram.
First, consider the solid (black) line which begins at

bEK ' 0:19 on the b axis, bends up, and ends on the top
of the diagram. Our conjecture is that this separates a
center symmetry-broken phase to the left (shown shaded)
from an unbroken phase to the right. This is based on what
we know about the EK model, and the assumption that the
results of Ref. [14] apply qualitatively to our model. (Note
that there can only be a phase transition when N ! 1,
while for finite N this will be smoothed out into a cross-
over.) It is possible that this line actually has a nonzero
width and contains intermediate partially broken phases.4
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phase between the two in which the ZN symmetry is broken
down to a Z2 subgroup. Finally, when $ grows even more,
to values above '1:4, the ZN symmetry is completely
broken again.
It is unclear how the fact that in the current paper we

study a theory where all lattice directions are reduced to a
point changes the results of Ref. [14]. Nevertheless, assum-
ing that the results of Ref. [14] provide a qualitative guide,
we are led to conjecture the phase diagram shown in Fig. 2.
In the following we describe the features of this diagram.
First, consider the solid (black) line which begins at

bEK ' 0:19 on the b axis, bends up, and ends on the top
of the diagram. Our conjecture is that this separates a
center symmetry-broken phase to the left (shown shaded)
from an unbroken phase to the right. This is based on what
we know about the EK model, and the assumption that the
results of Ref. [14] apply qualitatively to our model. (Note
that there can only be a phase transition when N ! 1,
while for finite N this will be smoothed out into a cross-
over.) It is possible that this line actually has a nonzero
width and contains intermediate partially broken phases.4
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Figure 1: Scatter plots of the Polyakov loops for b = 0.5 without adjoint fermions. The number
of colors are Nc = 2, 8, and 16 for left, middle, and right, respectively.

2 Volume Reduced Theory

Lattice action, Dirac operator, ...

3 Simulation Details

types of fermions, parameters, ensembles, observables, ...
In 24 lattice, the Polyakov loop may be given by

Pµ(x0) =
1

Nc
trUµ(x0)Uµ(x0 + µ), (1)

where x0 can be any site whose µ component is zero.

4 Numerical Results: Z4
Nc

Center Symmetry

The non-trivial condition of the usage of the large Nc equvalence is that the Z4
Nc

center symmetry
of the reduced volume theory must be unbroken. Some evidences of whether center symmetry is
unbroken are as follows: (1) the Polyakov loop scatters radially in the vicinity of origin in complex
plane, (2) the magnitude of the Polyakov loop approaches zero as Nc increases where the predicted
asypmtotic scaling behavior is 1/Nc, (3) the average plaquette value measured from the reduced
model agrees with that measured from the larage volume lattice gauge theory. In this section,
we present our findings for SU(Nc) gauge theory without adjoint fermions and with two heavy
adjoint fermions.

4.1 SU(Nc) without adjoint fermions

The reduced model of pure four-dimensional Euclidean Yang-Mills theory is not our target theory.
Nevertheless, it is still instructive to understand the breaking of center symmetry and provides a
nontrivial check of our simulation code by reproducing known results, i.e. the center symmetry
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where x0 can be any site whose µ component is zero.
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Nc

center symmetry
of the reduced volume theory must be unbroken. Some evidences of whether center symmetry is
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plane, (2) the magnitude of the Polyakov loop approaches zero as Nc increases where the predicted
asypmtotic scaling behavior is 1/Nc, (3) the average plaquette value measured from the reduced
model agrees with that measured from the larage volume lattice gauge theory. In this section,
we present our findings for SU(Nc) gauge theory without adjoint fermions and with two heavy
adjoint fermions.

4.1 SU(Nc) without adjoint fermions

The reduced model of pure four-dimensional Euclidean Yang-Mills theory is not our target theory.
Nevertheless, it is still instructive to understand the breaking of center symmetry and provides a
nontrivial check of our simulation code by reproducing known results, i.e. the center symmetry
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Magnitude of the Polyakov loops
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The relevant symmetries of ZAEK are the same as those
of the original EK model. They are the remnant of the
gauge symmetry

8 !: U! ! !U!!
y with ! 2 SUðNÞ; (3.5)

as well as center transformations applied independently to
the four link matrices

U! ! U!z
n! with z ¼ e2"i=N and n! 2 ZN:

(3.6)

As explained in Sec. I, large-N equivalence holds as
long as the ðZNÞ4 symmetry in Eq. (3.6) is unbroken. We
recall here how this equivalence works in detail. This
equivalence states that appropriate expectation values in
the reduced theory become identical whenN ! 1 to those
in the infinite-volume theory defined by Eq. (2.1).
Appropriate expectation values in the large-volume theory
are the connected correlators of ðZNÞ4-invariant and
translation-invariant operators. These are mapped into op-
erators in the reduced theory following the prescription of
Refs. [2,6]. For example, consider the large-volume expec-
tation value of the plaquette,

u $ 1

N

1

NP

X

P

htrUPiZadj
: (3.7)

The notation h; iZadj
means that we calculate expectation

values in the ensemble defined by the partition function in
Eq. (2.1). NP is the number of plaquettes, which in four
dimensions is equal to 6L4. The corresponding single-site
expectation value is

ured $
1

N

1

6

X

!<#

htrU!U#U
y
!U

y
# iZAEK

(3.8)

so that, in fact,

ured ¼ uðL ¼ 1Þ: (3.9)

The meaning of volume reduction is that

uðb;$Þ ¼ uredðb;$Þ (3.10)

when N ! 1 in both theories.
Our aim in this paper is to find the regions of the b% $

plane in which the ground state of the single-site model is
invariant under the ðZNÞ4 center symmetry, so that equiv-
alences of the form of Eq. (3.10) hold. We first collect what
is known about the single-site theory, together with some
conjectures, into a phase diagram.

For infinitely massive fermions (i.e. for $ ¼ 0), our
theory becomes the original EK model. This is known to
break the ðZNÞ4 symmetry for b > bEK & 0:19 and numeri-
cal evidence suggests that the transition is first order

[8,10,42]. A crucial issue is then whether, for b > bEK,
an increase in $ can lead to the restoration of the center
symmetry. This is what one would expect based on the
results of Refs. [6,14]. Specifically, Ref. [14] studied a
lattice theory similar to Eq. (3.1) but in which only one
of the Euclidean dimensions is reduced to a point. This
weak-coupling calculation found that, for the Nf ¼ 1 the-
ory, the center symmetry is broken for $ ¼ 0, but restored
once $ * 0:04. There is, in addition, a small intermediate
phase between the two in which the ZN symmetry is broken
down to a Z2 subgroup. Finally, when $ grows even more,
to values above '1:4, the ZN symmetry is completely
broken again.
It is unclear how the fact that in the current paper we

study a theory where all lattice directions are reduced to a
point changes the results of Ref. [14]. Nevertheless, assum-
ing that the results of Ref. [14] provide a qualitative guide,
we are led to conjecture the phase diagram shown in Fig. 2.
In the following we describe the features of this diagram.
First, consider the solid (black) line which begins at

bEK ' 0:19 on the b axis, bends up, and ends on the top
of the diagram. Our conjecture is that this separates a
center symmetry-broken phase to the left (shown shaded)
from an unbroken phase to the right. This is based on what
we know about the EK model, and the assumption that the
results of Ref. [14] apply qualitatively to our model. (Note
that there can only be a phase transition when N ! 1,
while for finite N this will be smoothed out into a cross-
over.) It is possible that this line actually has a nonzero
width and contains intermediate partially broken phases.4
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FIG. 2 (color online). Conjectured phase diagram for the
single-site model in the large-N limit. Details are discussed in
the text.

4For example, this was seen in Ref. [42] at $ ¼ 0.

BARAK BRINGOLTZ AND STEPHEN R. SHARPE PHYSICAL REVIEW D 80, 065031 (2009)

065031-6

Bringoltz, Sharpe, 2009
Bringoltz, Koren, Sharpe, 2011

Adjoint Eguchi-Kawai model (AEK)

Kovtun, Unsal & Yaffe 2007/2010

            fermions in adjoint representation with periodic boundary conditions

stabilized center symmetry

single-site EK with Nf=1,2 adj. fermions

(ZNc)4 center symmetry is unbroken 
even at weak coupling & heavy fermions

The relevant symmetries of ZAEK are the same as those
of the original EK model. They are the remnant of the
gauge symmetry

8 !: U! ! !U!!
y with ! 2 SUðNÞ; (3.5)

as well as center transformations applied independently to
the four link matrices

U! ! U!z
n! with z ¼ e2"i=N and n! 2 ZN:

(3.6)

As explained in Sec. I, large-N equivalence holds as
long as the ðZNÞ4 symmetry in Eq. (3.6) is unbroken. We
recall here how this equivalence works in detail. This
equivalence states that appropriate expectation values in
the reduced theory become identical whenN ! 1 to those
in the infinite-volume theory defined by Eq. (2.1).
Appropriate expectation values in the large-volume theory
are the connected correlators of ðZNÞ4-invariant and
translation-invariant operators. These are mapped into op-
erators in the reduced theory following the prescription of
Refs. [2,6]. For example, consider the large-volume expec-
tation value of the plaquette,

u $ 1

N
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NP
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P

htrUPiZadj
: (3.7)

The notation h; iZadj
means that we calculate expectation

values in the ensemble defined by the partition function in
Eq. (2.1). NP is the number of plaquettes, which in four
dimensions is equal to 6L4. The corresponding single-site
expectation value is
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so that, in fact,

ured ¼ uðL ¼ 1Þ: (3.9)

The meaning of volume reduction is that

uðb;$Þ ¼ uredðb;$Þ (3.10)

when N ! 1 in both theories.
Our aim in this paper is to find the regions of the b% $

plane in which the ground state of the single-site model is
invariant under the ðZNÞ4 center symmetry, so that equiv-
alences of the form of Eq. (3.10) hold. We first collect what
is known about the single-site theory, together with some
conjectures, into a phase diagram.

For infinitely massive fermions (i.e. for $ ¼ 0), our
theory becomes the original EK model. This is known to
break the ðZNÞ4 symmetry for b > bEK & 0:19 and numeri-
cal evidence suggests that the transition is first order

[8,10,42]. A crucial issue is then whether, for b > bEK,
an increase in $ can lead to the restoration of the center
symmetry. This is what one would expect based on the
results of Refs. [6,14]. Specifically, Ref. [14] studied a
lattice theory similar to Eq. (3.1) but in which only one
of the Euclidean dimensions is reduced to a point. This
weak-coupling calculation found that, for the Nf ¼ 1 the-
ory, the center symmetry is broken for $ ¼ 0, but restored
once $ * 0:04. There is, in addition, a small intermediate
phase between the two in which the ZN symmetry is broken
down to a Z2 subgroup. Finally, when $ grows even more,
to values above '1:4, the ZN symmetry is completely
broken again.
It is unclear how the fact that in the current paper we

study a theory where all lattice directions are reduced to a
point changes the results of Ref. [14]. Nevertheless, assum-
ing that the results of Ref. [14] provide a qualitative guide,
we are led to conjecture the phase diagram shown in Fig. 2.
In the following we describe the features of this diagram.
First, consider the solid (black) line which begins at

bEK ' 0:19 on the b axis, bends up, and ends on the top
of the diagram. Our conjecture is that this separates a
center symmetry-broken phase to the left (shown shaded)
from an unbroken phase to the right. This is based on what
we know about the EK model, and the assumption that the
results of Ref. [14] apply qualitatively to our model. (Note
that there can only be a phase transition when N ! 1,
while for finite N this will be smoothed out into a cross-
over.) It is possible that this line actually has a nonzero
width and contains intermediate partially broken phases.4
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The relevant symmetries of ZAEK are the same as those
of the original EK model. They are the remnant of the
gauge symmetry

8 !: U! ! !U!!
y with ! 2 SUðNÞ; (3.5)

as well as center transformations applied independently to
the four link matrices

U! ! U!z
n! with z ¼ e2"i=N and n! 2 ZN:

(3.6)

As explained in Sec. I, large-N equivalence holds as
long as the ðZNÞ4 symmetry in Eq. (3.6) is unbroken. We
recall here how this equivalence works in detail. This
equivalence states that appropriate expectation values in
the reduced theory become identical whenN ! 1 to those
in the infinite-volume theory defined by Eq. (2.1).
Appropriate expectation values in the large-volume theory
are the connected correlators of ðZNÞ4-invariant and
translation-invariant operators. These are mapped into op-
erators in the reduced theory following the prescription of
Refs. [2,6]. For example, consider the large-volume expec-
tation value of the plaquette,
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: (3.7)

The notation h; iZadj
means that we calculate expectation
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so that, in fact,

ured ¼ uðL ¼ 1Þ: (3.9)

The meaning of volume reduction is that

uðb;$Þ ¼ uredðb;$Þ (3.10)

when N ! 1 in both theories.
Our aim in this paper is to find the regions of the b% $

plane in which the ground state of the single-site model is
invariant under the ðZNÞ4 center symmetry, so that equiv-
alences of the form of Eq. (3.10) hold. We first collect what
is known about the single-site theory, together with some
conjectures, into a phase diagram.

For infinitely massive fermions (i.e. for $ ¼ 0), our
theory becomes the original EK model. This is known to
break the ðZNÞ4 symmetry for b > bEK & 0:19 and numeri-
cal evidence suggests that the transition is first order

[8,10,42]. A crucial issue is then whether, for b > bEK,
an increase in $ can lead to the restoration of the center
symmetry. This is what one would expect based on the
results of Refs. [6,14]. Specifically, Ref. [14] studied a
lattice theory similar to Eq. (3.1) but in which only one
of the Euclidean dimensions is reduced to a point. This
weak-coupling calculation found that, for the Nf ¼ 1 the-
ory, the center symmetry is broken for $ ¼ 0, but restored
once $ * 0:04. There is, in addition, a small intermediate
phase between the two in which the ZN symmetry is broken
down to a Z2 subgroup. Finally, when $ grows even more,
to values above '1:4, the ZN symmetry is completely
broken again.
It is unclear how the fact that in the current paper we

study a theory where all lattice directions are reduced to a
point changes the results of Ref. [14]. Nevertheless, assum-
ing that the results of Ref. [14] provide a qualitative guide,
we are led to conjecture the phase diagram shown in Fig. 2.
In the following we describe the features of this diagram.
First, consider the solid (black) line which begins at

bEK ' 0:19 on the b axis, bends up, and ends on the top
of the diagram. Our conjecture is that this separates a
center symmetry-broken phase to the left (shown shaded)
from an unbroken phase to the right. This is based on what
we know about the EK model, and the assumption that the
results of Ref. [14] apply qualitatively to our model. (Note
that there can only be a phase transition when N ! 1,
while for finite N this will be smoothed out into a cross-
over.) It is possible that this line actually has a nonzero
width and contains intermediate partially broken phases.4
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(ZNc)4 center symmetry is unbroken 
even at weak coupling & heavy fermions

The relevant symmetries of ZAEK are the same as those
of the original EK model. They are the remnant of the
gauge symmetry

8 !: U! ! !U!!
y with ! 2 SUðNÞ; (3.5)

as well as center transformations applied independently to
the four link matrices

U! ! U!z
n! with z ¼ e2"i=N and n! 2 ZN:

(3.6)

As explained in Sec. I, large-N equivalence holds as
long as the ðZNÞ4 symmetry in Eq. (3.6) is unbroken. We
recall here how this equivalence works in detail. This
equivalence states that appropriate expectation values in
the reduced theory become identical whenN ! 1 to those
in the infinite-volume theory defined by Eq. (2.1).
Appropriate expectation values in the large-volume theory
are the connected correlators of ðZNÞ4-invariant and
translation-invariant operators. These are mapped into op-
erators in the reduced theory following the prescription of
Refs. [2,6]. For example, consider the large-volume expec-
tation value of the plaquette,

u $ 1

N

1

NP

X

P

htrUPiZadj
: (3.7)

The notation h; iZadj
means that we calculate expectation

values in the ensemble defined by the partition function in
Eq. (2.1). NP is the number of plaquettes, which in four
dimensions is equal to 6L4. The corresponding single-site
expectation value is

ured $
1

N

1
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!<#

htrU!U#U
y
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y
# iZAEK

(3.8)

so that, in fact,

ured ¼ uðL ¼ 1Þ: (3.9)

The meaning of volume reduction is that

uðb;$Þ ¼ uredðb;$Þ (3.10)

when N ! 1 in both theories.
Our aim in this paper is to find the regions of the b% $

plane in which the ground state of the single-site model is
invariant under the ðZNÞ4 center symmetry, so that equiv-
alences of the form of Eq. (3.10) hold. We first collect what
is known about the single-site theory, together with some
conjectures, into a phase diagram.

For infinitely massive fermions (i.e. for $ ¼ 0), our
theory becomes the original EK model. This is known to
break the ðZNÞ4 symmetry for b > bEK & 0:19 and numeri-
cal evidence suggests that the transition is first order

[8,10,42]. A crucial issue is then whether, for b > bEK,
an increase in $ can lead to the restoration of the center
symmetry. This is what one would expect based on the
results of Refs. [6,14]. Specifically, Ref. [14] studied a
lattice theory similar to Eq. (3.1) but in which only one
of the Euclidean dimensions is reduced to a point. This
weak-coupling calculation found that, for the Nf ¼ 1 the-
ory, the center symmetry is broken for $ ¼ 0, but restored
once $ * 0:04. There is, in addition, a small intermediate
phase between the two in which the ZN symmetry is broken
down to a Z2 subgroup. Finally, when $ grows even more,
to values above '1:4, the ZN symmetry is completely
broken again.
It is unclear how the fact that in the current paper we

study a theory where all lattice directions are reduced to a
point changes the results of Ref. [14]. Nevertheless, assum-
ing that the results of Ref. [14] provide a qualitative guide,
we are led to conjecture the phase diagram shown in Fig. 2.
In the following we describe the features of this diagram.
First, consider the solid (black) line which begins at

bEK ' 0:19 on the b axis, bends up, and ends on the top
of the diagram. Our conjecture is that this separates a
center symmetry-broken phase to the left (shown shaded)
from an unbroken phase to the right. This is based on what
we know about the EK model, and the assumption that the
results of Ref. [14] apply qualitatively to our model. (Note
that there can only be a phase transition when N ! 1,
while for finite N this will be smoothed out into a cross-
over.) It is possible that this line actually has a nonzero
width and contains intermediate partially broken phases.4
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of the original EK model. They are the remnant of the
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8 !: U! ! !U!!
y with ! 2 SUðNÞ; (3.5)

as well as center transformations applied independently to
the four link matrices

U! ! U!z
n! with z ¼ e2"i=N and n! 2 ZN:

(3.6)

As explained in Sec. I, large-N equivalence holds as
long as the ðZNÞ4 symmetry in Eq. (3.6) is unbroken. We
recall here how this equivalence works in detail. This
equivalence states that appropriate expectation values in
the reduced theory become identical whenN ! 1 to those
in the infinite-volume theory defined by Eq. (2.1).
Appropriate expectation values in the large-volume theory
are the connected correlators of ðZNÞ4-invariant and
translation-invariant operators. These are mapped into op-
erators in the reduced theory following the prescription of
Refs. [2,6]. For example, consider the large-volume expec-
tation value of the plaquette,
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: (3.7)

The notation h; iZadj
means that we calculate expectation

values in the ensemble defined by the partition function in
Eq. (2.1). NP is the number of plaquettes, which in four
dimensions is equal to 6L4. The corresponding single-site
expectation value is
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so that, in fact,

ured ¼ uðL ¼ 1Þ: (3.9)

The meaning of volume reduction is that

uðb;$Þ ¼ uredðb;$Þ (3.10)

when N ! 1 in both theories.
Our aim in this paper is to find the regions of the b% $

plane in which the ground state of the single-site model is
invariant under the ðZNÞ4 center symmetry, so that equiv-
alences of the form of Eq. (3.10) hold. We first collect what
is known about the single-site theory, together with some
conjectures, into a phase diagram.

For infinitely massive fermions (i.e. for $ ¼ 0), our
theory becomes the original EK model. This is known to
break the ðZNÞ4 symmetry for b > bEK & 0:19 and numeri-
cal evidence suggests that the transition is first order

[8,10,42]. A crucial issue is then whether, for b > bEK,
an increase in $ can lead to the restoration of the center
symmetry. This is what one would expect based on the
results of Refs. [6,14]. Specifically, Ref. [14] studied a
lattice theory similar to Eq. (3.1) but in which only one
of the Euclidean dimensions is reduced to a point. This
weak-coupling calculation found that, for the Nf ¼ 1 the-
ory, the center symmetry is broken for $ ¼ 0, but restored
once $ * 0:04. There is, in addition, a small intermediate
phase between the two in which the ZN symmetry is broken
down to a Z2 subgroup. Finally, when $ grows even more,
to values above '1:4, the ZN symmetry is completely
broken again.
It is unclear how the fact that in the current paper we

study a theory where all lattice directions are reduced to a
point changes the results of Ref. [14]. Nevertheless, assum-
ing that the results of Ref. [14] provide a qualitative guide,
we are led to conjecture the phase diagram shown in Fig. 2.
In the following we describe the features of this diagram.
First, consider the solid (black) line which begins at

bEK ' 0:19 on the b axis, bends up, and ends on the top
of the diagram. Our conjecture is that this separates a
center symmetry-broken phase to the left (shown shaded)
from an unbroken phase to the right. This is based on what
we know about the EK model, and the assumption that the
results of Ref. [14] apply qualitatively to our model. (Note
that there can only be a phase transition when N ! 1,
while for finite N this will be smoothed out into a cross-
over.) It is possible that this line actually has a nonzero
width and contains intermediate partially broken phases.4
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conjectures, into a phase diagram.

For infinitely massive fermions (i.e. for $ ¼ 0), our
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[8,10,42]. A crucial issue is then whether, for b > bEK,
an increase in $ can lead to the restoration of the center
symmetry. This is what one would expect based on the
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study a theory where all lattice directions are reduced to a
point changes the results of Ref. [14]. Nevertheless, assum-
ing that the results of Ref. [14] provide a qualitative guide,
we are led to conjecture the phase diagram shown in Fig. 2.
In the following we describe the features of this diagram.
First, consider the solid (black) line which begins at

bEK ' 0:19 on the b axis, bends up, and ends on the top
of the diagram. Our conjecture is that this separates a
center symmetry-broken phase to the left (shown shaded)
from an unbroken phase to the right. This is based on what
we know about the EK model, and the assumption that the
results of Ref. [14] apply qualitatively to our model. (Note
that there can only be a phase transition when N ! 1,
while for finite N this will be smoothed out into a cross-
over.) It is possible that this line actually has a nonzero
width and contains intermediate partially broken phases.4
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The relevant symmetries of ZAEK are the same as those
of the original EK model. They are the remnant of the
gauge symmetry

8 !: U! ! !U!!
y with ! 2 SUðNÞ; (3.5)

as well as center transformations applied independently to
the four link matrices

U! ! U!z
n! with z ¼ e2"i=N and n! 2 ZN:

(3.6)

As explained in Sec. I, large-N equivalence holds as
long as the ðZNÞ4 symmetry in Eq. (3.6) is unbroken. We
recall here how this equivalence works in detail. This
equivalence states that appropriate expectation values in
the reduced theory become identical whenN ! 1 to those
in the infinite-volume theory defined by Eq. (2.1).
Appropriate expectation values in the large-volume theory
are the connected correlators of ðZNÞ4-invariant and
translation-invariant operators. These are mapped into op-
erators in the reduced theory following the prescription of
Refs. [2,6]. For example, consider the large-volume expec-
tation value of the plaquette,

u $ 1

N
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htrUPiZadj
: (3.7)

The notation h; iZadj
means that we calculate expectation

values in the ensemble defined by the partition function in
Eq. (2.1). NP is the number of plaquettes, which in four
dimensions is equal to 6L4. The corresponding single-site
expectation value is

ured $
1
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(3.8)

so that, in fact,

ured ¼ uðL ¼ 1Þ: (3.9)

The meaning of volume reduction is that

uðb;$Þ ¼ uredðb;$Þ (3.10)

when N ! 1 in both theories.
Our aim in this paper is to find the regions of the b% $

plane in which the ground state of the single-site model is
invariant under the ðZNÞ4 center symmetry, so that equiv-
alences of the form of Eq. (3.10) hold. We first collect what
is known about the single-site theory, together with some
conjectures, into a phase diagram.

For infinitely massive fermions (i.e. for $ ¼ 0), our
theory becomes the original EK model. This is known to
break the ðZNÞ4 symmetry for b > bEK & 0:19 and numeri-
cal evidence suggests that the transition is first order

[8,10,42]. A crucial issue is then whether, for b > bEK,
an increase in $ can lead to the restoration of the center
symmetry. This is what one would expect based on the
results of Refs. [6,14]. Specifically, Ref. [14] studied a
lattice theory similar to Eq. (3.1) but in which only one
of the Euclidean dimensions is reduced to a point. This
weak-coupling calculation found that, for the Nf ¼ 1 the-
ory, the center symmetry is broken for $ ¼ 0, but restored
once $ * 0:04. There is, in addition, a small intermediate
phase between the two in which the ZN symmetry is broken
down to a Z2 subgroup. Finally, when $ grows even more,
to values above '1:4, the ZN symmetry is completely
broken again.
It is unclear how the fact that in the current paper we

study a theory where all lattice directions are reduced to a
point changes the results of Ref. [14]. Nevertheless, assum-
ing that the results of Ref. [14] provide a qualitative guide,
we are led to conjecture the phase diagram shown in Fig. 2.
In the following we describe the features of this diagram.
First, consider the solid (black) line which begins at

bEK ' 0:19 on the b axis, bends up, and ends on the top
of the diagram. Our conjecture is that this separates a
center symmetry-broken phase to the left (shown shaded)
from an unbroken phase to the right. This is based on what
we know about the EK model, and the assumption that the
results of Ref. [14] apply qualitatively to our model. (Note
that there can only be a phase transition when N ! 1,
while for finite N this will be smoothed out into a cross-
over.) It is possible that this line actually has a nonzero
width and contains intermediate partially broken phases.4
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when N ! 1 in both theories.
Our aim in this paper is to find the regions of the b% $

plane in which the ground state of the single-site model is
invariant under the ðZNÞ4 center symmetry, so that equiv-
alences of the form of Eq. (3.10) hold. We first collect what
is known about the single-site theory, together with some
conjectures, into a phase diagram.

For infinitely massive fermions (i.e. for $ ¼ 0), our
theory becomes the original EK model. This is known to
break the ðZNÞ4 symmetry for b > bEK & 0:19 and numeri-
cal evidence suggests that the transition is first order

[8,10,42]. A crucial issue is then whether, for b > bEK,
an increase in $ can lead to the restoration of the center
symmetry. This is what one would expect based on the
results of Refs. [6,14]. Specifically, Ref. [14] studied a
lattice theory similar to Eq. (3.1) but in which only one
of the Euclidean dimensions is reduced to a point. This
weak-coupling calculation found that, for the Nf ¼ 1 the-
ory, the center symmetry is broken for $ ¼ 0, but restored
once $ * 0:04. There is, in addition, a small intermediate
phase between the two in which the ZN symmetry is broken
down to a Z2 subgroup. Finally, when $ grows even more,
to values above '1:4, the ZN symmetry is completely
broken again.
It is unclear how the fact that in the current paper we

study a theory where all lattice directions are reduced to a
point changes the results of Ref. [14]. Nevertheless, assum-
ing that the results of Ref. [14] provide a qualitative guide,
we are led to conjecture the phase diagram shown in Fig. 2.
In the following we describe the features of this diagram.
First, consider the solid (black) line which begins at

bEK ' 0:19 on the b axis, bends up, and ends on the top
of the diagram. Our conjecture is that this separates a
center symmetry-broken phase to the left (shown shaded)
from an unbroken phase to the right. This is based on what
we know about the EK model, and the assumption that the
results of Ref. [14] apply qualitatively to our model. (Note
that there can only be a phase transition when N ! 1,
while for finite N this will be smoothed out into a cross-
over.) It is possible that this line actually has a nonzero
width and contains intermediate partially broken phases.4
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as well as center transformations applied independently to
the four link matrices
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n! with z ¼ e2"i=N and n! 2 ZN:
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As explained in Sec. I, large-N equivalence holds as
long as the ðZNÞ4 symmetry in Eq. (3.6) is unbroken. We
recall here how this equivalence works in detail. This
equivalence states that appropriate expectation values in
the reduced theory become identical whenN ! 1 to those
in the infinite-volume theory defined by Eq. (2.1).
Appropriate expectation values in the large-volume theory
are the connected correlators of ðZNÞ4-invariant and
translation-invariant operators. These are mapped into op-
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so that, in fact,
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The meaning of volume reduction is that

uðb;$Þ ¼ uredðb;$Þ (3.10)

when N ! 1 in both theories.
Our aim in this paper is to find the regions of the b% $

plane in which the ground state of the single-site model is
invariant under the ðZNÞ4 center symmetry, so that equiv-
alences of the form of Eq. (3.10) hold. We first collect what
is known about the single-site theory, together with some
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For infinitely massive fermions (i.e. for $ ¼ 0), our
theory becomes the original EK model. This is known to
break the ðZNÞ4 symmetry for b > bEK & 0:19 and numeri-
cal evidence suggests that the transition is first order

[8,10,42]. A crucial issue is then whether, for b > bEK,
an increase in $ can lead to the restoration of the center
symmetry. This is what one would expect based on the
results of Refs. [6,14]. Specifically, Ref. [14] studied a
lattice theory similar to Eq. (3.1) but in which only one
of the Euclidean dimensions is reduced to a point. This
weak-coupling calculation found that, for the Nf ¼ 1 the-
ory, the center symmetry is broken for $ ¼ 0, but restored
once $ * 0:04. There is, in addition, a small intermediate
phase between the two in which the ZN symmetry is broken
down to a Z2 subgroup. Finally, when $ grows even more,
to values above '1:4, the ZN symmetry is completely
broken again.
It is unclear how the fact that in the current paper we

study a theory where all lattice directions are reduced to a
point changes the results of Ref. [14]. Nevertheless, assum-
ing that the results of Ref. [14] provide a qualitative guide,
we are led to conjecture the phase diagram shown in Fig. 2.
In the following we describe the features of this diagram.
First, consider the solid (black) line which begins at

bEK ' 0:19 on the b axis, bends up, and ends on the top
of the diagram. Our conjecture is that this separates a
center symmetry-broken phase to the left (shown shaded)
from an unbroken phase to the right. This is based on what
we know about the EK model, and the assumption that the
results of Ref. [14] apply qualitatively to our model. (Note
that there can only be a phase transition when N ! 1,
while for finite N this will be smoothed out into a cross-
over.) It is possible that this line actually has a nonzero
width and contains intermediate partially broken phases.4
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The relevant symmetries of ZAEK are the same as those
of the original EK model. They are the remnant of the
gauge symmetry

8 !: U! ! !U!!
y with ! 2 SUðNÞ; (3.5)

as well as center transformations applied independently to
the four link matrices

U! ! U!z
n! with z ¼ e2"i=N and n! 2 ZN:

(3.6)

As explained in Sec. I, large-N equivalence holds as
long as the ðZNÞ4 symmetry in Eq. (3.6) is unbroken. We
recall here how this equivalence works in detail. This
equivalence states that appropriate expectation values in
the reduced theory become identical whenN ! 1 to those
in the infinite-volume theory defined by Eq. (2.1).
Appropriate expectation values in the large-volume theory
are the connected correlators of ðZNÞ4-invariant and
translation-invariant operators. These are mapped into op-
erators in the reduced theory following the prescription of
Refs. [2,6]. For example, consider the large-volume expec-
tation value of the plaquette,

u $ 1

N
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X
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htrUPiZadj
: (3.7)

The notation h; iZadj
means that we calculate expectation

values in the ensemble defined by the partition function in
Eq. (2.1). NP is the number of plaquettes, which in four
dimensions is equal to 6L4. The corresponding single-site
expectation value is

ured $
1
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htrU!U#U
y
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y
# iZAEK

(3.8)

so that, in fact,

ured ¼ uðL ¼ 1Þ: (3.9)

The meaning of volume reduction is that

uðb;$Þ ¼ uredðb;$Þ (3.10)

when N ! 1 in both theories.
Our aim in this paper is to find the regions of the b% $

plane in which the ground state of the single-site model is
invariant under the ðZNÞ4 center symmetry, so that equiv-
alences of the form of Eq. (3.10) hold. We first collect what
is known about the single-site theory, together with some
conjectures, into a phase diagram.

For infinitely massive fermions (i.e. for $ ¼ 0), our
theory becomes the original EK model. This is known to
break the ðZNÞ4 symmetry for b > bEK & 0:19 and numeri-
cal evidence suggests that the transition is first order

[8,10,42]. A crucial issue is then whether, for b > bEK,
an increase in $ can lead to the restoration of the center
symmetry. This is what one would expect based on the
results of Refs. [6,14]. Specifically, Ref. [14] studied a
lattice theory similar to Eq. (3.1) but in which only one
of the Euclidean dimensions is reduced to a point. This
weak-coupling calculation found that, for the Nf ¼ 1 the-
ory, the center symmetry is broken for $ ¼ 0, but restored
once $ * 0:04. There is, in addition, a small intermediate
phase between the two in which the ZN symmetry is broken
down to a Z2 subgroup. Finally, when $ grows even more,
to values above '1:4, the ZN symmetry is completely
broken again.
It is unclear how the fact that in the current paper we

study a theory where all lattice directions are reduced to a
point changes the results of Ref. [14]. Nevertheless, assum-
ing that the results of Ref. [14] provide a qualitative guide,
we are led to conjecture the phase diagram shown in Fig. 2.
In the following we describe the features of this diagram.
First, consider the solid (black) line which begins at

bEK ' 0:19 on the b axis, bends up, and ends on the top
of the diagram. Our conjecture is that this separates a
center symmetry-broken phase to the left (shown shaded)
from an unbroken phase to the right. This is based on what
we know about the EK model, and the assumption that the
results of Ref. [14] apply qualitatively to our model. (Note
that there can only be a phase transition when N ! 1,
while for finite N this will be smoothed out into a cross-
over.) It is possible that this line actually has a nonzero
width and contains intermediate partially broken phases.4
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FIG. 2 (color online). Conjectured phase diagram for the
single-site model in the large-N limit. Details are discussed in
the text.

4For example, this was seen in Ref. [42] at $ ¼ 0.
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stabilized center symmetry

single-site EK with Nf=1,2 adj. fermions

(ZNc)4 center symmetry is unbroken 
even at weak coupling & heavy fermions

The relevant symmetries of ZAEK are the same as those
of the original EK model. They are the remnant of the
gauge symmetry

8 !: U! ! !U!!
y with ! 2 SUðNÞ; (3.5)

as well as center transformations applied independently to
the four link matrices

U! ! U!z
n! with z ¼ e2"i=N and n! 2 ZN:

(3.6)

As explained in Sec. I, large-N equivalence holds as
long as the ðZNÞ4 symmetry in Eq. (3.6) is unbroken. We
recall here how this equivalence works in detail. This
equivalence states that appropriate expectation values in
the reduced theory become identical whenN ! 1 to those
in the infinite-volume theory defined by Eq. (2.1).
Appropriate expectation values in the large-volume theory
are the connected correlators of ðZNÞ4-invariant and
translation-invariant operators. These are mapped into op-
erators in the reduced theory following the prescription of
Refs. [2,6]. For example, consider the large-volume expec-
tation value of the plaquette,

u $ 1

N

1

NP

X

P

htrUPiZadj
: (3.7)

The notation h; iZadj
means that we calculate expectation

values in the ensemble defined by the partition function in
Eq. (2.1). NP is the number of plaquettes, which in four
dimensions is equal to 6L4. The corresponding single-site
expectation value is

ured $
1

N

1

6

X

!<#

htrU!U#U
y
!U

y
# iZAEK

(3.8)

so that, in fact,

ured ¼ uðL ¼ 1Þ: (3.9)

The meaning of volume reduction is that

uðb;$Þ ¼ uredðb;$Þ (3.10)

when N ! 1 in both theories.
Our aim in this paper is to find the regions of the b% $

plane in which the ground state of the single-site model is
invariant under the ðZNÞ4 center symmetry, so that equiv-
alences of the form of Eq. (3.10) hold. We first collect what
is known about the single-site theory, together with some
conjectures, into a phase diagram.

For infinitely massive fermions (i.e. for $ ¼ 0), our
theory becomes the original EK model. This is known to
break the ðZNÞ4 symmetry for b > bEK & 0:19 and numeri-
cal evidence suggests that the transition is first order

[8,10,42]. A crucial issue is then whether, for b > bEK,
an increase in $ can lead to the restoration of the center
symmetry. This is what one would expect based on the
results of Refs. [6,14]. Specifically, Ref. [14] studied a
lattice theory similar to Eq. (3.1) but in which only one
of the Euclidean dimensions is reduced to a point. This
weak-coupling calculation found that, for the Nf ¼ 1 the-
ory, the center symmetry is broken for $ ¼ 0, but restored
once $ * 0:04. There is, in addition, a small intermediate
phase between the two in which the ZN symmetry is broken
down to a Z2 subgroup. Finally, when $ grows even more,
to values above '1:4, the ZN symmetry is completely
broken again.
It is unclear how the fact that in the current paper we

study a theory where all lattice directions are reduced to a
point changes the results of Ref. [14]. Nevertheless, assum-
ing that the results of Ref. [14] provide a qualitative guide,
we are led to conjecture the phase diagram shown in Fig. 2.
In the following we describe the features of this diagram.
First, consider the solid (black) line which begins at

bEK ' 0:19 on the b axis, bends up, and ends on the top
of the diagram. Our conjecture is that this separates a
center symmetry-broken phase to the left (shown shaded)
from an unbroken phase to the right. This is based on what
we know about the EK model, and the assumption that the
results of Ref. [14] apply qualitatively to our model. (Note
that there can only be a phase transition when N ! 1,
while for finite N this will be smoothed out into a cross-
over.) It is possible that this line actually has a nonzero
width and contains intermediate partially broken phases.4
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FIG. 2 (color online). Conjectured phase diagram for the
single-site model in the large-N limit. Details are discussed in
the text.

4For example, this was seen in Ref. [42] at $ ¼ 0.
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The relevant symmetries of ZAEK are the same as those
of the original EK model. They are the remnant of the
gauge symmetry

8 !: U! ! !U!!
y with ! 2 SUðNÞ; (3.5)

as well as center transformations applied independently to
the four link matrices

U! ! U!z
n! with z ¼ e2"i=N and n! 2 ZN:

(3.6)

As explained in Sec. I, large-N equivalence holds as
long as the ðZNÞ4 symmetry in Eq. (3.6) is unbroken. We
recall here how this equivalence works in detail. This
equivalence states that appropriate expectation values in
the reduced theory become identical whenN ! 1 to those
in the infinite-volume theory defined by Eq. (2.1).
Appropriate expectation values in the large-volume theory
are the connected correlators of ðZNÞ4-invariant and
translation-invariant operators. These are mapped into op-
erators in the reduced theory following the prescription of
Refs. [2,6]. For example, consider the large-volume expec-
tation value of the plaquette,

u $ 1

N

1

NP

X
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htrUPiZadj
: (3.7)

The notation h; iZadj
means that we calculate expectation

values in the ensemble defined by the partition function in
Eq. (2.1). NP is the number of plaquettes, which in four
dimensions is equal to 6L4. The corresponding single-site
expectation value is
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so that, in fact,

ured ¼ uðL ¼ 1Þ: (3.9)

The meaning of volume reduction is that

uðb;$Þ ¼ uredðb;$Þ (3.10)

when N ! 1 in both theories.
Our aim in this paper is to find the regions of the b% $

plane in which the ground state of the single-site model is
invariant under the ðZNÞ4 center symmetry, so that equiv-
alences of the form of Eq. (3.10) hold. We first collect what
is known about the single-site theory, together with some
conjectures, into a phase diagram.

For infinitely massive fermions (i.e. for $ ¼ 0), our
theory becomes the original EK model. This is known to
break the ðZNÞ4 symmetry for b > bEK & 0:19 and numeri-
cal evidence suggests that the transition is first order

[8,10,42]. A crucial issue is then whether, for b > bEK,
an increase in $ can lead to the restoration of the center
symmetry. This is what one would expect based on the
results of Refs. [6,14]. Specifically, Ref. [14] studied a
lattice theory similar to Eq. (3.1) but in which only one
of the Euclidean dimensions is reduced to a point. This
weak-coupling calculation found that, for the Nf ¼ 1 the-
ory, the center symmetry is broken for $ ¼ 0, but restored
once $ * 0:04. There is, in addition, a small intermediate
phase between the two in which the ZN symmetry is broken
down to a Z2 subgroup. Finally, when $ grows even more,
to values above '1:4, the ZN symmetry is completely
broken again.
It is unclear how the fact that in the current paper we

study a theory where all lattice directions are reduced to a
point changes the results of Ref. [14]. Nevertheless, assum-
ing that the results of Ref. [14] provide a qualitative guide,
we are led to conjecture the phase diagram shown in Fig. 2.
In the following we describe the features of this diagram.
First, consider the solid (black) line which begins at

bEK ' 0:19 on the b axis, bends up, and ends on the top
of the diagram. Our conjecture is that this separates a
center symmetry-broken phase to the left (shown shaded)
from an unbroken phase to the right. This is based on what
we know about the EK model, and the assumption that the
results of Ref. [14] apply qualitatively to our model. (Note
that there can only be a phase transition when N ! 1,
while for finite N this will be smoothed out into a cross-
over.) It is possible that this line actually has a nonzero
width and contains intermediate partially broken phases.4
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Figure 1: Scatter plots of the Polyakov loops for b = 0.5 without adjoint fermions. The number
of colors are Nc = 2, 8, and 16 for left, middle, and right, respectively.

2 Volume Reduced Theory

Lattice action, Dirac operator, ...

3 Simulation Details

types of fermions, parameters, ensembles, observables, ...
In 24 lattice, the Polyakov loop may be given by

Pµ(x0) =
1

Nc
trUµ(x0)Uµ(x0 + µ), (1)

where x0 can be any site whose µ component is zero.

4 Numerical Results: Z4
Nc

Center Symmetry

The non-trivial condition of the usage of the large Nc equvalence is that the Z4
Nc

center symmetry
of the reduced volume theory must be unbroken. Some evidences of whether center symmetry is
unbroken are as follows: (1) the Polyakov loop scatters radially in the vicinity of origin in complex
plane, (2) the magnitude of the Polyakov loop approaches zero as Nc increases where the predicted
asypmtotic scaling behavior is 1/Nc, (3) the average plaquette value measured from the reduced
model agrees with that measured from the larage volume lattice gauge theory. In this section,
we present our findings for SU(Nc) gauge theory without adjoint fermions and with two heavy
adjoint fermions.

4.1 SU(Nc) without adjoint fermions

The reduced model of pure four-dimensional Euclidean Yang-Mills theory is not our target theory.
Nevertheless, it is still instructive to understand the breaking of center symmetry and provides a
nontrivial check of our simulation code by reproducing known results, i.e. the center symmetry

3

Plaquette value for Nf=2 is consistent with that from large 
volume calculation, while Nf=0 value is far above all others.
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Figure 7: Dirac spectrum

The adjoint fermions with heavy masses play an important role for the restoration of the center
symmetry. Since the EK volume equivalence is only valid for the same lattice parameters, such
as the bare coupling and the fermions mass, the equivalent larege volume theory has also large
fermions mass as in EK model. In standard lattice gaughe theory the heavy fermions are not
dynamical and can be integrated out. Therefore, the theory is approximately quenched theory
and thus the ChRMT we are considering for comparison is one for quenched theory.

The adjoint QCD with any number of flavors is belonged to the universal class of the Chi-
ral Gaussian Sympletic Ensemble (ChGSE). However, we also consider other two universal classes,
Chiral Gaussian Orthogonal Ensemble (ChGOE) and Ghiral Gaussian Unitary Ensemble (ChGUE),
in order to make the comparison manifest. The ChRMT predictions of the distribution of the
lowest eigenvlue are

P (z) = (6)

and those of the spectral density are

⇢(z) = (7)
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Study of large Nc adjoint QCD using overlap fermions

1 General Remarks

In this test, we first try to reproduce the numerical results in [1], where the properties of the low-lying
eigenvalues of the Hermitian overlap-Dirac operator

H = γ5 D = γ5
1

2

[

1 + γ5 sgn[Hw(−m0)]

]

, (1)

are studied. γ5 Hw(−m0) is the standard Wilson-Dirac operator, and the Wilson mass is set to be negative
value −m0 < 0.

Once we succeeded to reproduce the results, we repeat the same calculation with various values of β, m0,
Nf and L/a to see if it is possilbe to test whether the spontaneous chiral symmetry breaking occurs in a
given theory having (fermion rep., Nc, Nf ) within this framework.

2 Predictions of Chiral Random Matrix Theories

2.1 Overview

The overview of Chiral Random Matrix Theories is given below following [2]. The chiral random matrix
theory ensembles are defined by

Z(β)
ν (m1, · · · , mNf

) =

∫

dW e−β tr v(W †W )

Nf
∏

i=1

det













mf W

−W † mf













, (2)

where the integrals are over complex, real ,and quaternion real (N + ν)×N matricies W for β= 2, 1, and 4,
respectively. These chiral random matrix ensembles provide exactly equivalent descriptions of the effective
field theory partition functions in the microscopic finite-volume scaling regime. Since the result turn out to
be universal, i.e., independent of the detailed form of the random matrix theory potential v(W †W ), it suffices
for us to concentrate on Gaussian ensembles with v(x) = x.

The partition functions (2) can then be written in terms of eigenvalues {xi} of the positive-definite matrices
W †W ,

Z(β)
ν (m1, · · · , mNf

) =





Nf
∏

i=1

mi





ν
∫ ∞

0
· · ·

∫ ∞

0

N
∏

i=1



dxi xβ(ν+1)/2−1
i e−βxi

Nf
∏

j=1

(xi + m2
j )





N
∏

i>j

|xi − xj |β , (3)

up to an overall irrelevant factor which is independent of the m’s.

2.2 Microscopic spectral density

The microscopic spectral density for Chiral Gaussian Unitary Ensemble (ChGUE), Chiral Gaussian Orthog-
onal Ensemble (ChGOE), and Chiral Gaussian Symplectic Ensemble (ChGSE) is given by

ρChGUE
a (λ)/N =

λ

2

∫ 1

0
du Ja(

√
uλ2)Ja(

√
uλ2), (4)

ρChGOE
a (λ)/N =

λ

2

[

∫ 1

0
du Ja(

√
uλ2)Ja(

√
uλ2) +

1

2
Ja(λ)

∫ ∞

1
du

1√
u

Ja(
√

uλ2)

]

, (5)

ρChGSE
a (λ)/N =

λ

2

[

∫ 1

0
du Ja(

√

u(2λ)2)Ja(
√

u(2λ)2) −
1

2
Ja(2λ)

∫ 1

0
du

1√
u

Ja(
√

u(2λ)2)

]

, (6)
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respectively. The physical meaning of the subscript a is

a =











































Nf + |ν| for ChGUE

Nf + 2|ν|? for ChGOE

Nf + 2|ν|? for ChGSE

(7)

where ν is topological charge and Nf is the number of flavors in Dirac basis (not Majonara). Ja(x) is Bessel
function,

Ja(x) =
(x/2)a

√
πΓ(a + 1

2)

∫ π

0
dθ cos(x cos θ) sin2a θ. (8)

=
(x

2

)a ∞
∑

n=0

(−1)n
(

x
2

)2n

n! Γ(a + n + 1)
(x ≥ 0), (9)

Γ(z) =

∫ ∞

0
dt e−ttz−1, (10)

Γ(z + 1) = zΓ(z), Γ(1) = 1, Γ(2) = 1, Γ(3) = 2, Γ(n + 1) = n!, (11)

Γ(1/2) =
√

π, Γ(3/2) =
√

π/2, Γ(5/2) = 3
√

π/4. (12)

2.3 The unfolded level spacing distribution

P (s) =











































π

2
s e−(π/4) s2

orthogonal ensembles

32

π2
s2 e−(4/π) s2

unitary ensemble

262144

729 π3
s4 e−(64/9 π) s2

symplectic ensemble

. (13)

2.4 The distribution of the lowest eigenvalue

The predictions in the Qtop=0 sector is give as

Pmin(z) =











































2 + z

4
e−(z/2)−(z2/8) for ChGOE

z

2
e−z2/4 for ChGUE

√

π

2
z3/2I3/2(z) e−z2/2 for ChGSE

, (14)

where Iν(z) is the modified Bessel function of the first kind,

Iν(z) = e−νπi/2 Jν(eπi/2z) [ for −π < arg z < π/2 ]

=
(z

2

)ν
∞

∑

n=0

(z/2)2n

n! Γ(ν + n + 1)
[ for z $= negative real ]

= I−ν(z) [ for −π < arg z < π/2 and ν ∈ Z ]

, (15)

and z = λminΣV ∈ R.
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Comparison with chRMT prediction

chRMT prediction perfectly agrees with the numerical data - 
chiral symmetry is broken.

    chiral symmetry is broken in the large-Nc quenched QCD
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Scaling behavior of the Dirac eigenvalues

Ì

Ì Ì
Ì

Ì

Á

Á Á
Á Á Á

Á

Á

É

É É É É É
É É

É
É

É

0 2 4 6 8 100.00

0.05

0.10

0.15

0.20

0.25

k

dl
k
â
N
c

· Nc=16

Á Nc=12

Ì Nc=8

coincide

b=0.5, Nf=2, V=24

chRMT limit:

Large Nc volume reduction and chiral random matrix theory Jong-Wan Lee

original (parent) theory, we obtain a new (daughter) theory by performing a projection under some
discrete subgroup of the global symmetry of the parent theory. If the discrete symmetry does not
break down spontaneously, the correlation functions of invariant (neutral) sectors of operators in
both theories are equal up to a trivial rescaling factor.

Provided the chiral symmetry is spontaneously broken, the dynamics of QCD at below LQCD

can be described by the low-energy effective theory where the degrees of freedom are Goldston
bosons such as pions instead of quarks and gluons. If we go further inside the e-regime, where
the one-fourth of space-time volume is much smaller than the pion Compton length, the relevant
degrees of freedom are zero modes of pions and the density of Dirac eigenvalues near zero is related
to the chiral condensate S via Banks-Casher relation [11]. The distribution of the low-lying Dirac
eigenvalues can be calculated using the chiral random matrix theory (cRMT) in the microscopic
limit, N ! • while having mN fixed, where the matrix size N is identified by V in the standard
gauge theory (for a review, see [12]). In large Nc gauge theories, the number of color charges Nc

are also relevant degrees of freedom and the corresponding limit may be obtained by taking the
large Nc limit with a fixed mN ⇠ mV Na

c , where the constant a can depend on the representation of
fermions. Let us call this limit as the "cRMT limit" which is very different from the ’t Hooft limit:
the fermion mass scales with Nc and hence ch,B in Eq. 2.1 also has a nontrivial Nc-dependence
implying that the ’t Hooft power counting rules are not valid. Because of this difference, the large
Nc equivalences do not hold in the cRMT limit. In the next section, however, we argue that the EK
equivalence and the cRMT combined with lattice simulations can simultaneously be used to detect
the ScSB in QCD-like theories.

3. Strategy of detecting the spontaneous chiral symmetry breaking

In this section we establish the way to use the cRMT in large Nc gauge theory for detection
of the ScSB. First let us recall how one can confirm the chiral symmetry breakdown in the or-
dinary SU(3) QCD. The criterion for the ScSB is the nonzero chiral condensate in the standard
thermodynamic limit,

hȳyi 6= 0 in the massless limit m ! 0 after taking the large-volume limit V ! •.

On the other hand, for QCD in the e-regime, the ScSB is recognized by the agreement of the
low-lying Dirac spectrum with the prediction from cRMT.

In the case of large Nc gauge theory, the logic is as follows. First, we calculate the low-
lying Dirac spectrum of the large Nc gauge theory in a small box (e.g. on a 14 or 24 lattice) and
compare the spectrum with the prediction from cRMT. Here the probe mass mprobe must scale
as mprobe ⇠ 1/Na

c for large Nc, otherwise such that the cRMT limit is realized. Because of this
scaling, the EK equivalence, requiring Nc ! • with m fixed, can not be applied directly. However,
following the same logic as the QCD case except that V is now replaced with Na

c , the agreement of
the spectrum with the prediction from cRMT still establish the ScSB of the large Nc gauge theory
in a small box. Then the EK equivalence leads to the ScSB of the large Nc gauge theory in large
volume. The power a is determined so that mprobe and the Dirac eigenvalues near zero have the
same Nc -dependence, and we will see a = 1 in our setup. The schematic diagram of the detection
of the ScSB in the large-Nc limit is shown in Fig. 1.

4. Lattice simulation of EK model

Numerical simulations are performed with the Wilson gauge action and Wilson-Dirac fermions

3

is fixed, while      (and/or    )

Large Nc volume reduction and chiral random matrix theory Jong-Wan Lee

Eguchi-Kawai equivalence

‘t Hooft limit:

RMT limit:
agreement of 
microscopic properties

The partition function of the �RMT is given by

Z =

�
d�

Nf�

i=1

det D e� N�
2 G2tr�†�, (9)

where � is a N � (N + �) matrix and G is a normalization parameter specified shortly. N
corresponds to the the size of the system (roughly speaking the spacetime volume), and � is the
topological charge. We also introduced a suitable normalization with the parameter G in the
Gaussian. Correspondingly to the thermodynamic limit of QCD, N is sent to infinity. In this
limit, however, the quark mass mf must be scaled so that mfN , which is (roughly speaking)
identified with mfV , is fixed. Note that, seen as a large-N matrix model, this limit is di�erent
from the ’t Hooft large-N limit, which requires mf to be fixed. This di�erence is crucial when we
compare the large-Nc gauge theories and �RMT, as we will see in § 4.

The ensemble and the Dirac operator D are chosen so that the Dirac operator has the same
symmetries as the counterpart in QCD and QCD-like theories. Depending on the universality
classes, there are three �RMTs, which are distinguished by the Dyson index � = 1, � = 2, and
� = 4 [18]:

• � = 2 (QCD and SU(Nc) (Nc � 3) with the fundamental quarks):

D =

✓
mf1 �
��† mf1

◆
, (10)

where � is a N � (N + �) complex matrix and mf (f = 1, 2, · · · , Nf ) are the quark masses.

• � = 1 (SU(2) and USp(2Nc) with the fundamental quarks):

D =

✓
mf1 �
��T mf1

◆
, (11)

where � is a N � (N + �) real matrix.

• � = 4 (SU(Nc) with the adjoint quarks and SO(Nc))

D =

✓
mf1 �
��† mf1

◆
, (12)

where � is a 2N � 2(N + �) quaternion real matrix [see (??) for the definition].

4 Large-Nc versus �RMT

In this section we establish the way to compare the large-Nc gauge theory and �RMT. For con-
creteness, we consider the SU(Nc) lattice theory with volume V with quark mass m, where V is
fixed to be small. (V = 24 is the Eguchi-Kawai model we consider.)

mNc fixed, while Nc ! � (13)
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4.1 Di�erence of the limits

In order to compare the large-Nc gauge theory and �RMT, we must understand the di�erence of
the limits, which are required for the large-Nc equivalence and the universality, respectively:

• When one compares the �RMT with the gauge theory, the matrix size N of the �RMT is
identified with the degrees of freedom in the gauge theory which are important for the low-
energy dynamics, N ⇠ V N�

c , where � is a constant which can depend on the representation
of the fermion in general. (As we will see, � = 1 for the probe adjoint representation in the
Eguchi-Kawai model.) In order for the universality to hold, mN ⇠ mV N�

c must be fixed as
we take the large-Nc limit. Let us call it as the “�RMT limit”.

• In order for the large-Nc equivalences (e.g. the Eguchi-Kawai equivalence) to hold, the
ordinary ’t Hooft large-Nc limit, in which m and V are fixed, must be taken.

The �RMT limit is very di�erent from the ’t Hooft limit. Actually the standard ’t Hooft 1/Nc

counting explained in § 2 does not hold there. In order to see it, let us consider the connected
correlation function of the chiral condensate in the �RMT (see e.g. [35])
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where �i are eigenvalues of the Dirac operator. In the ’t Hooft counting, it is of order N0. It is
true when m is of order one; then 1/(�i +m)k is of order one, and sum of 2N order-one quantities
is of order N1. However when m scales as 1/N , the smallest of �i + m is also of order 1/N , and
hence the correlation function becomes of order Nk�1. This divergence corresponds to the infrared
divergence in usual SU(3) QCD. In the large-Nc field theories, this corresponds the divergence
with some power of Nc, which spoils the ’t Hooft counting.

This peculiar behavior can also be understood in terms of the large-Nc gauge theory; because
the coe�cients cg,b in (4) are functions of m and V , they can have nontrivial Nc-dependences in
the �RMT limit, where m and V are scaled with Nc.

4.2 The comparison

First let us recall how one can confirm the chiral symmetry breakdown in the ordinary SU(3) QCD.
The criterion for the spontaneous chiral symmetry breaking is the nonzero chiral condensate in
the standard thermodynamic limit,

h�̄�i 6= 0 in the massless limit m ! 0 after the large-volume limit V ! �.
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Figure 1: Detection of the spontaneously breakdown of chiral symmetry in large Nc gauge theories using
the cRMT and EK equivalence.
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where b and k represent the inverse of the ’t Hooft coupling, b = 1/g2Nc, and the hopping paremeter
which is related to bare quark mass by k = (2ma+8)�1, respectively. The Plaquettes Pµn are built
of link variables in the fundamental representation as usual. For the fermionic action, the link
variables in the adjoint representation are defined by

Uad j
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Tr[T a
F UT b

F U†], (4.3)

where T a
F are SU(Nc) generators in the fundamental representation. This action is invariant under

SU(Nc) local gauge transformation as well as ZNc global center transformation:

Un,µ �! WnUn,µW†
n+µ , Wn 2 SU(NC), and Un,µ �! e2pinµ/NcUn,µ , nµ 2 ZNc . (4.4)

Throughout our studies, we use periodic boundary conditions for all lattice directions in both link
variables and fermion fields.

Our lattice simulations consist of two parts: 1) quenched calculations (k = 0 or equivalently
ma is infinite), as a nontrivial check of our numerical code by confirming the breaking of center
symmetry at weak coupling, 2) simulations for two adjoint fermions whose mass is of order 1/a
(k = 0.09) 2, where low-lying Dirac eigenvalues are calculated by using a massless overlap-Dirac
fermion as a probe. We performed simulations at b = 0.5 for up to Nc = 16 which is relatively
smaller than that used for simulations of a single-site EK model [7, 14, 15]. As we will see below
however, we could obtain good large Nc limits since we have additional suppression of the finite
volume effects thanks to the larger volume V = 24. For Nc = 8 and k = 0, we also performed

2These heavy adjoint fermions serves as a "center symmetry preserver", where our chose of k = 0.09 and b = 0.5
is inside of the conjectured center symmetric region in the k � b plane [14], but do not play any role in other parts of
dynamics. Thus the case 2) can be also considered as a quenched calculation.
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Eguchi-Kawai equivalence

‘t Hooft limit:

RMT limit:
agreement of 
microscopic properties

The partition function of the �RMT is given by

Z =

�
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Nf�

i=1

det D e� N�
2 G2tr�†�, (9)

where � is a N � (N + �) matrix and G is a normalization parameter specified shortly. N
corresponds to the the size of the system (roughly speaking the spacetime volume), and � is the
topological charge. We also introduced a suitable normalization with the parameter G in the
Gaussian. Correspondingly to the thermodynamic limit of QCD, N is sent to infinity. In this
limit, however, the quark mass mf must be scaled so that mfN , which is (roughly speaking)
identified with mfV , is fixed. Note that, seen as a large-N matrix model, this limit is di�erent
from the ’t Hooft large-N limit, which requires mf to be fixed. This di�erence is crucial when we
compare the large-Nc gauge theories and �RMT, as we will see in § 4.

The ensemble and the Dirac operator D are chosen so that the Dirac operator has the same
symmetries as the counterpart in QCD and QCD-like theories. Depending on the universality
classes, there are three �RMTs, which are distinguished by the Dyson index � = 1, � = 2, and
� = 4 [18]:

• � = 2 (QCD and SU(Nc) (Nc � 3) with the fundamental quarks):

D =

✓
mf1 �
��† mf1

◆
, (10)

where � is a N � (N + �) complex matrix and mf (f = 1, 2, · · · , Nf ) are the quark masses.

• � = 1 (SU(2) and USp(2Nc) with the fundamental quarks):

D =

✓
mf1 �
��T mf1

◆
, (11)

where � is a N � (N + �) real matrix.

• � = 4 (SU(Nc) with the adjoint quarks and SO(Nc))

D =

✓
mf1 �
��† mf1

◆
, (12)

where � is a 2N � 2(N + �) quaternion real matrix [see (??) for the definition].

4 Large-Nc versus �RMT

In this section we establish the way to compare the large-Nc gauge theory and �RMT. For con-
creteness, we consider the SU(Nc) lattice theory with volume V with quark mass m, where V is
fixed to be small. (V = 24 is the Eguchi-Kawai model we consider.)
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where �i are eigenvalues of the Dirac operator. In the ’t Hooft counting, it is of order N0. It is
true when m is of order one; then 1/(�i +m)k is of order one, and sum of 2N order-one quantities
is of order N1. However when m scales as 1/N , the smallest of �i + m is also of order 1/N , and
hence the correlation function becomes of order Nk�1. This divergence corresponds to the infrared
divergence in usual SU(3) QCD. In the large-Nc field theories, this corresponds the divergence
with some power of Nc, which spoils the ’t Hooft counting.

This peculiar behavior can also be understood in terms of the large-Nc gauge theory; because
the coe�cients cg,b in (4) are functions of m and V , they can have nontrivial Nc-dependences in
the �RMT limit, where m and V are scaled with Nc.

4.2 The comparison

First let us recall how one can confirm the chiral symmetry breakdown in the ordinary SU(3) QCD.
The criterion for the spontaneous chiral symmetry breaking is the nonzero chiral condensate in
the standard thermodynamic limit,

h�̄�i 6= 0 in the massless limit m ! 0 after the large-volume limit V ! �.
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Figure 1: Detection of the spontaneously breakdown of chiral symmetry in large Nc gauge theories using
the cRMT and EK equivalence.
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where b and k represent the inverse of the ’t Hooft coupling, b = 1/g2Nc, and the hopping paremeter
which is related to bare quark mass by k = (2ma+8)�1, respectively. The Plaquettes Pµn are built
of link variables in the fundamental representation as usual. For the fermionic action, the link
variables in the adjoint representation are defined by

Uad j
a,b =

1
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Tr[T a
F UT b

F U†], (4.3)

where T a
F are SU(Nc) generators in the fundamental representation. This action is invariant under

SU(Nc) local gauge transformation as well as ZNc global center transformation:

Un,µ �! WnUn,µW†
n+µ , Wn 2 SU(NC), and Un,µ �! e2pinµ/NcUn,µ , nµ 2 ZNc . (4.4)

Throughout our studies, we use periodic boundary conditions for all lattice directions in both link
variables and fermion fields.

Our lattice simulations consist of two parts: 1) quenched calculations (k = 0 or equivalently
ma is infinite), as a nontrivial check of our numerical code by confirming the breaking of center
symmetry at weak coupling, 2) simulations for two adjoint fermions whose mass is of order 1/a
(k = 0.09) 2, where low-lying Dirac eigenvalues are calculated by using a massless overlap-Dirac
fermion as a probe. We performed simulations at b = 0.5 for up to Nc = 16 which is relatively
smaller than that used for simulations of a single-site EK model [7, 14, 15]. As we will see below
however, we could obtain good large Nc limits since we have additional suppression of the finite
volume effects thanks to the larger volume V = 24. For Nc = 8 and k = 0, we also performed

2These heavy adjoint fermions serves as a "center symmetry preserver", where our chose of k = 0.09 and b = 0.5
is inside of the conjectured center symmetric region in the k � b plane [14], but do not play any role in other parts of
dynamics. Thus the case 2) can be also considered as a quenched calculation.
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original (parent) theory, we obtain a new (daughter) theory by performing a projection under some
discrete subgroup of the global symmetry of the parent theory. If the discrete symmetry does not
break down spontaneously, the correlation functions of invariant (neutral) sectors of operators in
both theories are equal up to a trivial rescaling factor.

Provided the chiral symmetry is spontaneously broken, the dynamics of QCD at below LQCD

can be described by the low-energy effective theory where the degrees of freedom are Goldston
bosons such as pions instead of quarks and gluons. If we go further inside the e-regime, where
the one-fourth of space-time volume is much smaller than the pion Compton length, the relevant
degrees of freedom are zero modes of pions and the density of Dirac eigenvalues near zero is related
to the chiral condensate S via Banks-Casher relation [11]. The distribution of the low-lying Dirac
eigenvalues can be calculated using the chiral random matrix theory (cRMT) in the microscopic
limit, N ! • while having mN fixed, where the matrix size N is identified by V in the standard
gauge theory (for a review, see [12]). In large Nc gauge theories, the number of color charges Nc

are also relevant degrees of freedom and the corresponding limit may be obtained by taking the
large Nc limit with a fixed mN ⇠ mV Na

c , where the constant a can depend on the representation of
fermions. Let us call this limit as the "cRMT limit" which is very different from the ’t Hooft limit:
the fermion mass scales with Nc and hence ch,B in Eq. 2.1 also has a nontrivial Nc-dependence
implying that the ’t Hooft power counting rules are not valid. Because of this difference, the large
Nc equivalences do not hold in the cRMT limit. In the next section, however, we argue that the EK
equivalence and the cRMT combined with lattice simulations can simultaneously be used to detect
the ScSB in QCD-like theories.

3. Strategy of detecting the spontaneous chiral symmetry breaking

In this section we establish the way to use the cRMT in large Nc gauge theory for detection
of the ScSB. First let us recall how one can confirm the chiral symmetry breakdown in the or-
dinary SU(3) QCD. The criterion for the ScSB is the nonzero chiral condensate in the standard
thermodynamic limit,

hȳyi 6= 0 in the massless limit m ! 0 after taking the large-volume limit V ! •.

On the other hand, for QCD in the e-regime, the ScSB is recognized by the agreement of the
low-lying Dirac spectrum with the prediction from cRMT.

In the case of large Nc gauge theory, the logic is as follows. First, we calculate the low-
lying Dirac spectrum of the large Nc gauge theory in a small box (e.g. on a 14 or 24 lattice) and
compare the spectrum with the prediction from cRMT. Here the probe mass mprobe must scale
as mprobe ⇠ 1/Na

c for large Nc, otherwise such that the cRMT limit is realized. Because of this
scaling, the EK equivalence, requiring Nc ! • with m fixed, can not be applied directly. However,
following the same logic as the QCD case except that V is now replaced with Na

c , the agreement of
the spectrum with the prediction from cRMT still establish the ScSB of the large Nc gauge theory
in a small box. Then the EK equivalence leads to the ScSB of the large Nc gauge theory in large
volume. The power a is determined so that mprobe and the Dirac eigenvalues near zero have the
same Nc -dependence, and we will see a = 1 in our setup. The schematic diagram of the detection
of the ScSB in the large-Nc limit is shown in Fig. 1.
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1/Nc scaling behavior has also been found in a single-site simulations 
for two heavy adjoint fermions.
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SU(2) two adjoint fermions - candidate of 
the Minimal Walking Technicolor m0del

Conclusion and Future work

• Numerical study of QCD-like theories on a small lattice is 
possible by using EK volume equivalence and chiral RMT 
in the large Nc limit.

Quenched QCD - chiral symmetry is spontaneously broken

• Applying this method to

SU(Nc) gauge theory with Nf = 2 dynamical adjoint fermions

e.g. twisted boundary condition

• EK model is economical? Not really, because Veff ~ Nc. 

1/Nc 1/Nc2



Thank you !
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Figure 1: Scatter plots of the Polyakov loops for b = 0.5 without adjoint fermions. The number
of colors are Nc = 2, 8, and 16 for left, middle, and right, respectively.

2 Volume Reduced Theory

Lattice action, Dirac operator, ...

3 Simulation Details

types of fermions, parameters, ensembles, observables, ...
In 24 lattice, the Polyakov loop may be given by

Pµ(x0) =
1

Nc
trUµ(x0)Uµ(x0 + µ), (1)

where x0 can be any site whose µ component is zero.

4 Numerical Results: Z4
Nc

Center Symmetry

The non-trivial condition of the usage of the large Nc equvalence is that the Z4
Nc

center symmetry
of the reduced volume theory must be unbroken. Some evidences of whether center symmetry is
unbroken are as follows: (1) the Polyakov loop scatters radially in the vicinity of origin in complex
plane, (2) the magnitude of the Polyakov loop approaches zero as Nc increases where the predicted
asypmtotic scaling behavior is 1/Nc, (3) the average plaquette value measured from the reduced
model agrees with that measured from the larage volume lattice gauge theory. In this section,
we present our findings for SU(Nc) gauge theory without adjoint fermions and with two heavy
adjoint fermions.

4.1 SU(Nc) without adjoint fermions

The reduced model of pure four-dimensional Euclidean Yang-Mills theory is not our target theory.
Nevertheless, it is still instructive to understand the breaking of center symmetry and provides a
nontrivial check of our simulation code by reproducing known results, i.e. the center symmetry
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4.1.3 Numerical results for ND
f = 1

We now discuss the Monte Carlo results for QCD(Adj) and TQCD(Adj) at zero temperature.
We restrict our analysis to the case with a single Dirac fermion in adjoint representation.14

In Fig. 2, the expectation value for the absolute value of the Wilson loop (averaged over all
directions)

|W | ≡ 1

4

4∑

µ=1

|Vµ|, (43)

in the QCD(Adj) and the TQCD(Adj) at zero temperature is plotted.15 For both the QCD(Adj)
and TQCD(Adj), 〈|W |〉 is of order 1/N and hence the (ZN )4 symmetry is unbroken. (As already
shown in [32], it is unbroken in a rather large parameter region.) The extent of the next-to-
leading correction is not clear from this plot; we fit it by 〈|W |〉 ∼ c/N + d/N2 for QCD(Adj) and
〈|W |〉 ∼ c′/N + d′/N3 for TQCD(Adj), where c, d, c′, d′ are constants.

In Fig. 3, expectation values of the plaquettes are plotted. From this plot, the finite-N
correction for the QCD(Adj) turns out to be of order 1/N . On the other hand, the finite-N
correction for the TQCD(Adj) is of order 1/N2 as expected.
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Figure 2: Expectation values of the Wilson loop
in QCD(Adj) and TQCD(Adj) at b = 0.50,κ =
0.09 and κ = 0 (bosonic twisted Eguchi-Kawai
model). Fitting curves are of the form c/N +
d/N2 for the former and c′/N + d′/N3 for the
latter. TQCD(Adj) at b = 0.50,κ = 0.09 and
κ = 0 agree quite well, as expected because κ =
0.09, corresponds to a quite heavy fermion.
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Figure 3: Expectation values of the plaque-
tte in QCD(Adj) at b = 0.50,κ = 0.09 and
TQCD(Adj) at b = 0.50,κ = 0.09, κ = 0.
The 1/N correction is of order 1/N for the
QCD(Adj) and 1/N2 for TQCD(Adj).

14 We implemented the rational hybrid Monte Carlo (RHMC) algorithm [48] with the multi-mass conjugate
gradient (CG) solver [49]. Numerical coefficients in the rational approximation necessary for the RHMC simulation
was obtained by using the simulation code provided at [50].

15We use absolute value of the Wilson line operator in small volume to distinguish a center-symmetric saddle
point from a multi-saddle configurations for which 〈W 〉 is non-vanishing at each saddle, but vanishes due to phase
averaging over all saddles (which is permitted in quantum theory due to tunneling). Multi-saddle configurations,
in the large-N limit, lead to spontaneously breaking of the center-symmetry, whereas a center symmetric saddle
continues to respect the center symmetry.
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14, Nf=2

periodic,

plaquette value scales as 1/N2.
cf) Plaquette value scales as 1/N in single-site 
simulation with two heavy adjoint fermions.
Bringoltz, Koren, Sharpe, 2011 Azeyanagi et al, 2010

1/N correction is expected to be 
suppressed by V=1/24
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Figure 1: Scatter plots of the Polyakov loops for b = 0.5 without adjoint fermions. The number
of colors are Nc = 2, 8, and 16 for left, middle, and right, respectively.

2 Volume Reduced Theory

Lattice action, Dirac operator, ...

3 Simulation Details

types of fermions, parameters, ensembles, observables, ...
In 24 lattice, the Polyakov loop may be given by

Pµ(x0) =
1

Nc
trUµ(x0)Uµ(x0 + µ), (1)

where x0 can be any site whose µ component is zero.

4 Numerical Results: Z4
Nc

Center Symmetry

The non-trivial condition of the usage of the large Nc equvalence is that the Z4
Nc

center symmetry
of the reduced volume theory must be unbroken. Some evidences of whether center symmetry is
unbroken are as follows: (1) the Polyakov loop scatters radially in the vicinity of origin in complex
plane, (2) the magnitude of the Polyakov loop approaches zero as Nc increases where the predicted
asypmtotic scaling behavior is 1/Nc, (3) the average plaquette value measured from the reduced
model agrees with that measured from the larage volume lattice gauge theory. In this section,
we present our findings for SU(Nc) gauge theory without adjoint fermions and with two heavy
adjoint fermions.

4.1 SU(Nc) without adjoint fermions

The reduced model of pure four-dimensional Euclidean Yang-Mills theory is not our target theory.
Nevertheless, it is still instructive to understand the breaking of center symmetry and provides a
nontrivial check of our simulation code by reproducing known results, i.e. the center symmetry
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directions)

|W | ≡ 1

4

4∑

µ=1

|Vµ|, (43)

in the QCD(Adj) and the TQCD(Adj) at zero temperature is plotted.15 For both the QCD(Adj)
and TQCD(Adj), 〈|W |〉 is of order 1/N and hence the (ZN )4 symmetry is unbroken. (As already
shown in [32], it is unbroken in a rather large parameter region.) The extent of the next-to-
leading correction is not clear from this plot; we fit it by 〈|W |〉 ∼ c/N + d/N2 for QCD(Adj) and
〈|W |〉 ∼ c′/N + d′/N3 for TQCD(Adj), where c, d, c′, d′ are constants.

In Fig. 3, expectation values of the plaquettes are plotted. From this plot, the finite-N
correction for the QCD(Adj) turns out to be of order 1/N . On the other hand, the finite-N
correction for the TQCD(Adj) is of order 1/N2 as expected.
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Figure 2: Expectation values of the Wilson loop
in QCD(Adj) and TQCD(Adj) at b = 0.50,κ =
0.09 and κ = 0 (bosonic twisted Eguchi-Kawai
model). Fitting curves are of the form c/N +
d/N2 for the former and c′/N + d′/N3 for the
latter. TQCD(Adj) at b = 0.50,κ = 0.09 and
κ = 0 agree quite well, as expected because κ =
0.09, corresponds to a quite heavy fermion.
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Figure 3: Expectation values of the plaque-
tte in QCD(Adj) at b = 0.50,κ = 0.09 and
TQCD(Adj) at b = 0.50,κ = 0.09, κ = 0.
The 1/N correction is of order 1/N for the
QCD(Adj) and 1/N2 for TQCD(Adj).

14 We implemented the rational hybrid Monte Carlo (RHMC) algorithm [48] with the multi-mass conjugate
gradient (CG) solver [49]. Numerical coefficients in the rational approximation necessary for the RHMC simulation
was obtained by using the simulation code provided at [50].

15We use absolute value of the Wilson line operator in small volume to distinguish a center-symmetric saddle
point from a multi-saddle configurations for which 〈W 〉 is non-vanishing at each saddle, but vanishes due to phase
averaging over all saddles (which is permitted in quantum theory due to tunneling). Multi-saddle configurations,
in the large-N limit, lead to spontaneously breaking of the center-symmetry, whereas a center symmetric saddle
continues to respect the center symmetry.
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14, Nf=2

periodic,

plaquette value scales as 1/N2.
cf) Plaquette value scales as 1/N in single-site 
simulation with two heavy adjoint fermions.
Bringoltz, Koren, Sharpe, 2011 Azeyanagi et al, 2010

1/N correction is expected to be 
suppressed by V=1/24
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The adjoint fermions with heavy masses play an important role for the restoration of the center
symmetry. Since the EK volume equivalence is only valid for the same lattice parameters, such
as the bare coupling and the fermions mass, the equivalent larege volume theory has also large
fermions mass as in EK model. In standard lattice gaughe theory the heavy fermions are not
dynamical and can be integrated out. Therefore, the theory is approximately quenched theory
and thus the ChRMT we are considering for comparison is one for quenched theory.

The adjoint QCD with any number of flavors is belonged to the universal class of the Chi-
ral Gaussian Sympletic Ensemble (ChGSE). However, we also consider other two universal classes,
Chiral Gaussian Orthogonal Ensemble (ChGOE) and Ghiral Gaussian Unitary Ensemble (ChGUE),
in order to make the comparison manifest. The ChRMT predictions of the distribution of the
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• Spacing of the low-lying Dirac eigenvalues

• Effective volumes Veff

Finite Nc correction to the plaquette values and Nc dependence of the low-
lying Dirac spectrum presumably indicate that the effective volume scales as 
Nc for AEK model with periodic b.c.

Volume expansion as an orbifold projection for adjoint QCD.
Kovtun, Unsal & Yaffe 2007

In the ‘t Hooft limit,                                then Leutwlyer & Smilga 1992

Our finding:

In compact space, momentum-zero modes are not gauged away and thus 
the low-lying Dirac spectrum can be determined by the zero modes, where 
their number scales as Nc. Azeyanagi, Hanada, Unsal, Yacoby. 2010
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Table 1: Fit results of extrapolations of the polyakov loop and the plaquette to Nc ⇤ ⌅ for
ensembles with b = 0.5 and two heavy adjoint fermions.

Data set Fit function c0 c1 c2 ⇤2/d.o.f
Nc = [2, 16] c0 + c1/N2

c + c2/N4
c 0.72067(14) 0.405(12) �0.283(61) 0.49

Plaquette Nc = [4, 16] c0 + c1/N2
c 0.72072(14) 0.396(10) 0.41

Nc = [4, 16] c0 + c1/Nc + c2/N2
c 0.72053(71) 0.003(13) 0.383(50) 0.47

Polyakov loop Nc = [5, 16] c0 + c1/Nc 0.0026(12) 0.819(15) 0.89
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Figure 6: (Left) Average plaquette values and (Right) average values of the magnitudes of the
Polyakov loops along with fit results in Table 1.

site reduced model, the 1/Nc correction term would be suppressed by 1/V . Indeed, we obtained a
consistent result where the one-sixteenth of the coe⇥cient of 1/Nc from [hanada] is well within the
uncertainty of our results shown in Table 1. The extracted plauquette value also agrees with that
in single site model [hanada], but it is systematically bigger than that from the large volume lattice
calculation for pure Yang-Mills due to the modification from finite fermion mass. The magnitude
of the Polyakov loop goes to zero as Nc increases; it scales as 1/Nc in the asymtotic region. The
average plaquette value is consistent with that from large volume lattice gauge theory; it scales
as 1/N2

c in the asymptotic region.
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The adjoint fermions with heavy masses play an important role for the restoration of the center
symmetry. Since the EK volume equivalence is only valid for the same lattice parameters, such
as the bare coupling and the fermions mass, the equivalent larege volume theory has also large
fermions mass as in EK model. In standard lattice gaughe theory the heavy fermions are not
dynamical and can be integrated out. Therefore, the theory is approximately quenched theory
and thus the ChRMT we are considering for comparison is one for quenched theory.

The adjoint QCD with any number of flavors is belonged to the universal class of the Chi-
ral Gaussian Sympletic Ensemble (ChGSE). However, we also consider other two universal classes,
Chiral Gaussian Orthogonal Ensemble (ChGOE) and Ghiral Gaussian Unitary Ensemble (ChGUE),
in order to make the comparison manifest. The ChRMT predictions of the distribution of the
lowest eigenvlue are
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