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Black hole-neutron star binaries 

• Ones of the most promising GW sources 
   - emit 1-a few kHz GWs just before the merger 
      fairly promising for ground-based detectors 
   - a robust test of GR / a new prove for the NS 
 

• Possible candidates of the short GRB engine 
   - merger scenario <-> accretion disk formation 
• A candidate of the r-process environment 
                                     (do not go into detail today) 



Gravitational-wave detectors 

LIGO at Hanford 

VIRGO at Cascina 

LCGT at Kamioka 

Sensitive in 10-1000Hz 
 … astrophysical sources 



Neutron star equations of state 
• The EOS at high density is not confirmed yet 
• NS radii are determined by the cold (T=0) EOS, 

but not constrained accurately by (X-ray) observ. 
 

• Can we determine 
    the NS radius by 
    GW observation? 
• We can obtain 
     the EOS if we know 
      the M-R relation Lattimer, Prakash (2007) 
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Typical GWs from BH-NS binaries 

• Classified as inspiral-merger-ringdown (if any) 

Red: numerical relativity 
Black: post-Newtonian 



Importance of numerical relativity 
• Appropriate methods differ among the three phases 
     1. inspiral phase … post-Newtonian approx. 
     2. merger phase … numerical relativity 
          strong (=nonlinear) gravity, hydrodynamics 
     3. ringdown phase … BH perturbation technique 
 

• Numerical relativity is the unique approach for the 
merger phase of compact binary coalescences 
 

• Tidal disruption of the NS determines the GWs and 
properties of the remnant disk, such as the mass 



Advantages of binary GW observation 

• Less systematic errors than EM observation 
   - the largest model is the EOS and GR itself 
• The dynamics before the merger is nearly free of 

the finite-temperature effects, magnetic fields… 
   - in BH-NS, all GWs are determined by T=0 EOSs 
  (- in NS-NS, hypermassive NSs also emits GWs) 
• The early inspiral gives us different information 
   - masses of each component, the BH spin 



When the tidal disruption occurs? 
• Two nondimensional parameters are important 
   - Mass ratio of BH/NS 
   - NS compactness 
    tidal disruption occurs outside the ISCO if the 

mass ratio Q and/or compactness Q are small 
   = the small BH mass and/or the large NS radius 
      ∵ tidal effect is a finite size effect of the NS 
• The large BH spin                            is also favored 
      ∵ The ISCO radius is small for a large BH spin   

1/ NSBH ≥= MMQ
2.015.0~/ NSNS −= RMC

2
BHBH / MSa ≡



The formulation and methods 
• Solve                                            
• Compute initial conditions 
   - the spectral method library LORENE 
                                                               http://www.lorene.obspm.fr/ 

   - developed new code for the BH spin / NS EOS 
• Perform simulations of time evolution 
   - AMR code SACRA developed in our group 
                      Yamamoto, Shibata, Taniguchi PRD (2008) 78 064054 

• EOSs closes the system of equations 
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The piecewise polytrope (PWP) 
• T=0, nuclear-theory based EOSs are 

approximated by analytic broken-polytropes 
 
 
 - less computational costs 
 - only a few parameters 
• Thermal effects are 
  incorporated by ideal gases 
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Comparison of tidal disruption 
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•  (only the BH is different in this example) 

Tidal disruption No tidal disruption 
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•                                                  Top: soft EOS 
•                                                  the small NS radius 
•                                                    weak disruption 

 

•                                                  Bottom: stiff EOS 
•                                                  the large NS radius 
•                                                    strong disruption 

GWs: differences due to the EOS 
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The GW spectrum 
•   0 ),2( 7.2,35.1 solBHsolNS ==== aQMMMM

quadrupole 

PN 

Larger radius 



Compactness vs cutoff frequency 
•              cases 
• Strong correlations 
    = The NS radius 
        can be read off 
         from GW observ. 

 
•                        when tidal disruption occurs 
•                                             seems to bring no 

tidal disruption -> an unrealistically story? 

Quasinormal mode of BH 
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GWs: difference due to the BH spin 
• Strong if the BH spin is parallel to orbiｔ.ang.mom. 

75.0=a

5.0−=a
ringdown 

tidal disruption 



Changes of spectra due to the spin 
• The large amplitude at low frequency 
• Cutoff occurs at lower frequency 

spin increases 



Compactness – cutoff frequency 
• BH spins lower the cutoff frequency 
   - the low frequency is preferred from observ. 

 
 

•                                                    we have to know 
•                                                      the BH spin using 
•                                                         inspiral GWs 

quasinormal modes 
 for different BH spins 

NSNS / RM



The GW spectrum for Q=5 
• In this case,                                -> maybe realistic 
• Adv. LIGO/LCGT will observe the spectrum cutoff 

solBH 75.6 MM =



Cutoff frequencies for a=0.75 
• Massive (realistic) BH-NS will tell us the NS EOS 

NSNS / RM



Formed accretion disks 

• The mass of the disk can exceed                 
when the tidal disruption is strong 

ρlog ρlog

sol1.0 M

solBH 75.6 MM =solBH 7.2 MM =

soldisk 2.0 MM = soldisk 1.0 MM =



Summary 
• We computed gravitational waves from black 

hole-neutron star binaries by numerical relativity. 
• Gravitational waves from black hole-neutron star 

binaries will tell us the equation of state of 
neutron star matter, especially when tidal 
disruption occurs. 

• Astrophysically realistic black hole-neutron star 
binaries will also tell us the equation of state if 
the BH spin is moderately strong. 

• The mass of the accretion disk can be sufficiently 
high to bring the short-hard gamma-ray burst. 



Future work 
• More waveforms for generic configurations 
   - an urgent task for the GW astronomy 
 

• Incorporate neutrinos and magnetic fields 
   - essential for GRBs, multi-messenger astron. 
 

• Analyze how accurately we can know the EOS 
   - the Fisher analysis using numerical relativity 
                        Lackey, KK, Shibata, Brady, Friedman PRD submitted                         



appendix 



Short-hard gamma-ray burst 

• Release 
     within  
   - jet opening angle -> ? 

 

• BH-accretion disks? 
   - LGRB: “collapsar” model 
   - SGRB: merger scenario? 
          BH-NS or NS-NS 
    Is a massive disk formed? 

From encyclopedia of science 

erg10 5149−

s 2~



The mass of the neutron star 

• EOSs are constrained by 
     the NS maximum mass, 
      recently 1.97Mo found 
 

• Radius measurement is 
     fairly difficult 
   - degeneracy w/ distance 
   - rad./atmosphere models 

Lattimer, Prakash (2010) 



Lattimer & Prakash (2007) 

 


	ブラックホール・中性子星�連星からの重力波と�状態方程式の影響
	Black hole-neutron star binaries
	Gravitational-wave detectors
	Neutron star equations of state
	Typical GWs from BH-NS binaries
	Importance of numerical relativity
	Advantages of binary GW observation
	When the tidal disruption occurs?
	The formulation and methods
	The piecewise polytrope (PWP)
	Comparison of tidal disruption
	GWs: differences due to the EOS
	The GW spectrum
	Compactness vs cutoff frequency
	GWs: difference due to the BH spin
	Changes of spectra due to the spin
	Compactness – cutoff frequency
	The GW spectrum for Q=5
	Cutoff frequencies for a=0.75
	Formed accretion disks
	Summary
	Future work
	appendix
	Short-hard gamma-ray burst
	The mass of the neutron star
	Lattimer & Prakash (2007)

