Magnetized binary neutron star merger

Kiuchi Kenta

Collaboration Shibata Masaru, Kyutoku Koutarou, Hotokezaka Kenta, Sekiguchi Yuichirou

High energy astrophysical phenomena e.g., binary black hole (BH), neutron star (NS) merger, Supernovae, gravitational stellar collapse

- ✓ Density ~ 10^{15} g/cm³ ⇒ Gravity, Strong interaction
- ✓ Temperature ~ 10^{11} K ⇒ Weak interaction
- ✓ Magnetic field ~ 10^{11-15} G ⇒ Electromagnetic interaction
- $\checkmark A symmetric and dynamical feature <math display="inline">\Rightarrow$ Numerical Modeling

<u>Numerical Relativity</u> = Solving Einstein eqs. + (magneto) hydrodynamics + (radiation field) to explore extreme physics 世界の重力波検出器と現状

 ✓ Experiments of high energy phenomena on computers
✓ Theoretical prediction of gravitational waves

✓ Canonical total mass of BNS \Rightarrow 2.7-2.8 M_☉ ✓ Canonical magnetic field strength \Rightarrow 10¹¹⁻¹³ G ✓ Maximum mass of NS \Rightarrow M_{max}= 1.97∓0.04 M_☉(PSR J1614-2230) (Demorest+ 10)

 $\checkmark M_{max} = 1.97 \mp 0.04 \text{ M}_{\odot} \Rightarrow$ "Realistic" path is (A)

Magnetic field amplification mechanism

✓ Magnetic winding Differential rotation (Angular velocity $\Omega \neq \text{const.}$) \Rightarrow B \propto t $^{\alpha}$ ↑ Magnetic field line Rotation ✓ Magneto rotational instability (Balbus & Hawley 91) Differential rotation ($\nabla \Omega < o$) $\Rightarrow B \propto e^{\alpha t}$ deceleration Center X X Fluid element Magnetic field line acceleration

Motivation

Points

✓ Case for M_{total} < M_{critical} : Rapid rotating NS formation
✓ Case for M_{total} > M_{critical} : BH formation
✓ Initial magnetic field configuration (Previous works : Confined magnetic fields (see below))

Magnetic field amplification inside the accretion disk around BH

Magnetic filed on the meridional plane

NS formation case

Initial fields are completely destroyed and amplified

<u>Central density</u> Maximum magnetic field 18 1.2(a) Dipole 17.5 ¹Merger Confine $\rho_{\rm max} \, [10^{15} \, {\rm g} \, / \, {\rm cm}^3]$ log₁₀[B_{max} (G) 17 1.0 Secular evolution 0.9 16.5 16 0.8 NS oscillation 15.5 0.7 0.6 15 0 20 30 80 50 60 70 90 100 110 120 130 2040 80 100 60 120 0 t [ms] t [ms]

✓ Dynamics does not depend on the magnetic field configuration ✓ Until ~70ms, power law amplification (B $\propto t^{1.3}$)

- ✓ For 70-90 ms, exponential growth (B $\infty e^{0.09t}$)
- ✓ After 90ms, saturation
- ✓ Qualitatively same feature for the confined model

✓ Power law amplification (B∝ t^{1.3}) ⇒ Magnetic winding ✓ Exponential growth (B ∝ e^{0.09t}) ⇒ Magneto Rotational Instability ✓ Recall that the condition for winding and MRI is $\nabla \Omega < 0$

 Ω [rad / s]

BH formation case Log₁₀[B(G)] t = 6.77 ms16 80 15 60 40 14 20 z [km] 0 13 -20 12 -40 -60 11 -80 10 -80 -60 -40 -20 0 20 40 60 80 x [km]

Magnetic field amplification inside the accretion disk

- ✓ Dominant toroidal field amplified by winding
- ✓ Saturation at 10¹⁶G
- ✓ More massive disk for B ≠0 model \Rightarrow favored model for Gamma Ray Burst central engine

Summary

Numerical Relativity simulation for magnetized binary neutron star merger

✓ Long-lived massive NS (favored evolution path for observational constraint with PSR J1614-2230)

Magnetic winding \Rightarrow Magneto Rotational Instability \Rightarrow Saturation But, need a careful resolution study because of $\lambda_{MRI} \propto B$

✓ BH formation (disfavored evolution path ?)

Winding amplification up to 10¹⁶G and massive disk

✓ Utilizing the technique developed here, we'll explore the origin of NS magnetic fields in HPCI Strategic program field 5 (Supernova Explosion)

Magnetic field energy vs rotational energy

 $E_{mag} \sim 0.01 E_{rot}$ C saturation