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Description of nuclei from NN/NNN               	



 Density functional theory	


•  Systematic	


•  computationally efficient	


•  Universal EDF unknown	



NN/NNN 

 ab initio	



binding energy, radius	


accuracy, feasibility	



Light nuclei 

 configuration interaction	



shell evolution, deformation, 
double-bata decay,..	



H(v)
e� �(v) = (E � Ec)�(v)

Medium-mass nuclei 
Methods should be controlled and improvable  
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still hard 	



Low-momentum interactions	


Vlow-k, SRG	



Λ	



RG evolution to lower resolution/Λ	



NN observables kept unchanged	



QCD	


AV18	



hard	


χEFT	


pion-exchange and short-range contact	


power counting (still open)	


- systematic expansion	


- many-body forces automatically 	



Bogner-Schwenk-Furnstahl, PPNP, 65, 94 (2010)	



H(�) = Trel + V2N (�) + V3N (�) + V4N (�) + · · ·

V(k,k’) 
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Similarity Renormalization Group 	


Glazek and Wilson, Phys. Rev. D48, 5863(1993), or Wegner, Ann. Phys. (Leipzig) 3, 77 (1994)	



can arbitrarily be defined	



The unitary evolution of the Hamiltonian via flow equation	



with block-diagonal flow operator Bogner et al. (2008)

low-momentum blocks very similar to Vlow k

formal equivalence?

SRG is exact at second-order

in the (tree-level) potential

SRG connections to EFT?

Block diagonalization using SRG

Vlow k

Anderson et al, PRC77, 037001 (2008) 

lower λ 

Bogner et al, PRC75, 061001(R) (2007) 

cutoff λ≡ s-1/4 as evolution variable	


Flexibility of choosing the Hd(s)  for a particular problem. 	



d

ds
Tr

��
Hod

�2
�
� 0by F. Wegner	

�(s) = [H(s),Hod(s)]

d

ds
H(s) = [�, H(s)]

�(s) =
dU(s)

ds
U†(s)
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RG and many-body interactions	



Jurgenson, Furnstahl and Navratil PRL103, 082501(2009)	



Free-space SRG, evolving consistent 3N interactions => exact method	



•  NN only => λ-dependent	


•  + induced NNN => almost λ-independent	



Roth et al., PRL107, 07201(2011)	
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choose to evolve in a discrete basis, where there are no
issues with disconnected terms and induced many-body
forces can be directly identified.

Our calculations are performed in the Jacobi coordi-
nate harmonic oscillator (HO) basis of the No-Core Shell
Model (NCSM) [13]. This is a translationally invariant,
anti-symmetric basis for each A, with a complete set of
states up to a maximum excitation of Nmax!Ω above the
minimum energy configuration, where Ω is the harmonic
oscillator parameter. The procedures used here build di-
rectly on Ref. [12], which presents a one-dimensional im-
plementation of our approach along with a general anal-
ysis of the evolving many-body hierarchy.

We start by evolving Hλ in the A = 2 subsystem, which

completely fixes the two-body matrix elements 〈V (2)
λ 〉.

Next, by evolving Hλ in the A = 3 subsystem we deter-
mine the combined two-plus-three-body matrix elements.
We can isolate the three-body matrix elements by sub-

tracting the evolved 〈V (2)
λ 〉 elements in the A = 3 ba-

sis [12]. Having obtained the separate NN and NNN ma-
trix elements, we can apply them to any nucleus. We are
also free to include any initial three-nucleon force in the
initial Hamiltonian without changing the procedure. If
applied to A ≥ 4, four-body (and higher) forces will not
be included and so the transformations will be only ap-
proximately unitary. The questions to be addressed are
whether the decreasing hierarchy of many-body forces is
maintained and whether the induced four-body contri-
bution is unnaturally large. We summarize in Table I
the different calculations to be made for 3H and 4He to
confront these questions.

The initial (λ = ∞) NN potential used here is the
500MeV N3LO interaction from Ref. [14]. The initial
NNN potential is the N2LO interaction [15] in the local
form of Ref. [16] with constants fit to the average of tri-
ton and 3He binding energies and to triton beta decay
according to Ref. [17]. We expect similar results from
other initial interactions because the SRG drives them
toward near universal form; a survey will be given in
Ref. [18]. NCSM calculations with these initial interac-
tions and the parameter set in Table I of Ref. [17] yield
energies of −8.473(4)MeV for 3H and −28.50(2)MeV for
4He compared with −8.482 MeV and −28.296 MeV from
experiment, respectively. So there is a 20 keV uncertainty
in the calculation of 4He from incomplete convergence
and a 200keV discrepancy with experiment. The latter
is consistent with the omission of three- and four-body
chiral interactions at N3LO. These provide a scale for
assessing whether induced four-body contributions are
important compared to other uncertainties.

In Fig. 1, the ground-state energy of the triton is plot-
ted as a function of the flow parameter λ. Evolution is
from λ = ∞, which is the initial (or “bare”) interaction,
toward λ = 0. We use Nmax = 36 and !Ω = 28 MeV, for
which all energies are converged to better than 10 keV.
We first consider an NN interaction with no initial NNN
(“NN-only”). If Hλ is evolved only in an A = 2 sys-
tem, higher-body induced pieces are lost. The resulting
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FIG. 1: (Color online) Ground-state energy of 3H as a func-
tion of the SRG evolution parameter, λ. See Table I for the
nomenclature of the curves.
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FIG. 2: (Color online) Ground-state energy of 4He as a func-
tion of the SRG evolution parameter, λ. See Table I for the
nomenclature of the curves.

energy calculations will only be approximately unitary
for A > 2 and the ground-state energy will vary with λ
(squares). Keeping the induced NNN yields a flat line
(circles), which implies an exactly unitary transforma-
tion; the line is equally flat if an initial NNN is included
(diamonds). Note that the net induced three-body is
comparable to the initial NNN contribution and thus is
of natural size.

In Fig. 2, we examine the SRG evolution in λ for 4He

with !Ω = 36 MeV. The 〈V (2)
λ 〉 and 〈V (3)

λ 〉 matrix ele-
ments were evolved in A = 2 and A = 3 with Nmax = 28

same trend for heavier systems 

•  Defined in many-body system (finite density)	


•  Approximate evolution of 3-, .. A-body operators within 2b 

machinery.	


•  Different SRG evolutions for different mass regions.	



K.T., S. Bogner and A. Schwenk, PRL106, 222502(2011) 	



In-medium SRG 
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Normal-ordered Hamiltonian	



Ĥ =
�

ij

Tija
†
iaj +

1
2!2

�

ijkl

V (2)
ijkla

†
ia

†
jalak +

1
3!2

�

ijklmn

V (3)
ijklnma†ia

†
ja

†
kanamal + · · ·

Normal order w.r.t. a finite-density Fermi vacuum |Φ〉, e.g. HF.	



H = E0 +
�

ij

fij{a†iaj} +
1

2!2
�

ijkl

�ijkl{a†ia
†
jalak} +

1
3!2

�

ijklmn

Wijklmn{a†ia
†
ja

†
kanamal}

 3-body and higher-body interactions through density- dependent coefficients.	


=> may be efficient truncation scheme	



where coefficients of normal-ordered operators are given by	


E0 = �⇥| H |⇥⇥ =

�

k

Tkknk +
1
2

�

ij

V (2)
ijijninj +

1
6

�

ijk

V (3)
ijkijkninjnk

fij = Tij +
�

k

V (2)
ikjknk +

1
2

�

kl

V (3)
ikljklnknl

�ijkl = V (2)
ijkl +

1
4

�

m

V (3)
ijmklmnm

Wijklmn = V (3)
ijklmn

��| {AiAj · · · } |�� = 0
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Decoupling (schematic picture)	



decouples ground state	



Hod = fph + Γpphh	



decouples valence space	



Φ0 

Hod = fph + Γpphh	



         + fvq + fvh + Γvv’qq’  + Γvhpp’ + Γvv’v’’h 

Φp Φ0 Φp 

Φ0 Φv Φq 

d

ds
H(s) = [�, H(s)] η(s) is determined s as to eliminate Hod(s) 

vertices connecting reference 
state and np-nh excited states 

vertices connecting valence  
space and outside of it. 



d

ds
E0(s) = 2

�

ab

nan̄b�
(1)
ab fba +

1
2

�

abcd

�(2)
abcd�cdab(s)nanbn̄cn̄d

+
1
18

�

abcdef

�(3)
abcdefWdefabcnanbncn̄dn̄en̄f
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In-medium SRG flow equation	



commutator form => no unlinked diagram 	


 => size extensive: energy scales linearly w/ # of particles	



Flow eqns.	



dH(s)
ds

= [�, H(s)] = [�(1) + �(2) + �(3) + · · · , f + � + W + · · · ]

d

ds
�ijkl(s) =

�

a

�
(1� Pij)(�

(1)
ia �ajkl � fia�(2)

ajkl)� (1� Pkl)(�
(1)
ai �ijal � fai�

(2)
ijal)

�

+
1
2

�

ab

(1� na � nb)(�
(2)
ijab�abkl � �ijab�

(2)
abkl)

�
�

ab

(na � nb)
�
(1� Pij)(1� Pkl)�

(2)
bjal�aibk

�

+
�

ab

(na � nb)
�
�(3)

aijbklfba �Waijbkl�
(1)
ba

�

+
1
2

�

abc

(nan̄bn̄c + n̄anbnc)
�

(1� PikPjlPij � Pkl + PikPjl)(�
(3)
aijbcl�bcak �Waijbcl�

(2)
bcak)

�

+
1
6

�

abcd

(nan̄bn̄cn̄d � n̄anbncnd)(�
(3)
aijbcdWbcdakl � �(3)

bcdaklWaijbcd)

+
1
4

�

abcd

(n̄an̄bncnd � nanbn̄cn̄d)(1� Pij)(1� Pkl)�
(3)
abicdlWcdjabk

IM-SRG(2): n6,  IM-SRG(3): n8	



pp or hh	



ph	
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Non-Perturbative feature: Schematic	



Γ[n+1]=	



Γ[n]	



+	

 +	



The flow equation can essentially be seen as	



With the initial condition	



=: V(bare two-body coupling)	

Γ[0]=	
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Non-Perturbativeness of IM-SRG: Schematic	



Γ[1]=	



V	



+	

 +	

 Solving the flow equation step by step	



Correlations to all order	



+	

 +	

 +	

 +	



Γ[2]=	

 +	

 +	



+	

 +	

 +	

 +	

 +...	
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Flow equation by perturbative analysis	


 IM-SRG(2), 95%	



 IM-SRG(3), 99%	


Ė0(s) = [�(2),�][2]+[�(1), f ][4] + [�(3),W ][4]

ḟ(s) = [�(1), f ][2] + [�(2),�][2]+[�(1),�][3] + [�(2), f ][3] + [�(2),W ][3] + [�(3),�][3]+[�(3),W ][4]

�̇(s) = [�(2), f ][1] + [�(2),�][2]+[�(1),�][3] + [�(2),W ][3] + [�(3),�][3]

+[�(1),W ][4] + [�(3), f ][4] + [�(3),W ][4]

Ẇ (s) = [�(3), f ][2] + [�(2),�][2]+[�(2),W ][3] + [�(3),�][3]+[�(1),W ][4] + [�(3), f ][4]

•  IM-SRG(2): 3rd-order exact for GS energy and 2nd-order exact for Veff.	


•  IM-SRG(3): 4th-order exact for GS energy and 3rd-order exact for Veff.	


•  IM-SRG is controlled and improvable method	
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Numerical calculations	



N=0	



N=1	


N=2	



N=emax	



N=0	


N=1	



N=2	



N=emax	



emax	

 # SP	

 dim (f)	


4	

 30	

 3.4×104	



5	

 42	

 1.5×105	



6	

 56	

 4.7×105	



7	

 72	

 1.4×106	



8	

 90	

 3.5×106	



10	

 130	

 2.0×107	



N3LO (Λ=500MeV) from χEFT   Entem-Machleidt, PRC 68, 041001(R) (2003)	


Free-space SRG evolved version Vsrg (λ) Bogner-Perry-Furnstahl, PRC75, 061001 (2008)	
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4He with two different generators	



Input Vsrg λ=2.0fm-1	



• Truncation up to normal-ordered 2-body level is a good approximation. 	



99% 
95% 
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CCSD	



Λ-CCSD(T)	



• Agrees well with CCSD (95% of correlation)	


• MBPT(2,3) break down	


• IM-SRG(2) work for 16O and 40Ca	





 s=0 MeV  s=10  MeV  s=10  MeV

hh

hh

pp

pp

hh hhpp pp

-3 -1-2-2 -2

15 

Hod gets suppressed.	
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Evolution of operators	


Arbitrary operator evolved on equal footing	



E.g., RMS radius	



d

ds
Or(s) = [�,Or(s)]

d

ds
H(s) = [�, H(s)]

Or(s) = O(0)
r (s) + O(1)

r (s) + O(2)
r (s) · · ·

Or(0) ⇥ 1
A

�

i

(�ri � �Rcm)2

�r� =
�

��| Or(0) |�� = lim
s��

�
O(0)

r (s)

Joint benchmark is ongoing (NCFC, IT-NCSM,CCM,MBGF,UMOA,IM-SRG)	


Results agree within uncertainty  

Next step from H. Kamada et al., PRC64:044001(2001) 
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Ground-state convergence in 6Li (4He+”2” vs 6)	


6-body problem Effective 2-body problem 
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6Li Spectra: IM-SRG vs NCSM	


6-body problem Effective 2-body problem 

Works for 18-body as well 
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Summary	



"  We introduced SRG evolution of Hamiltonian���
 in many-body medium (IM-SRG).	



"  We numerically demonstrated the features of in-medium SRG.	


" Decoupling of a Hamiltonian, Size-extensivity, Non-perturbative feature.	


"  Radius (arbitral operators can be evolved).	


"  Contamination of center of mass excitation is very small.	


"  Shell-model effective interactions for valence nucleons (p and sd).	



Summary	



"  Derivation of effective operator.	


"  Systematic improvement; 3-body flow equations.	



Work in Progress	




