Evolution of Rotating Massive Stars

Takashi Yoshida & Hideyuki Umeda 吉田 敬, 梅田秀之

Department of Astronomy, University of Tokyo

素核宇融合による計算基礎物理学の進展 2011年12月5日, 合歓の郷

Rotating Massive Stars

Effects of rotation in stellar evolution

Rotational mixing

Mass loss

Angular momentum distribution

(Meynet & Maeder 2002)

Rotating massive stars Aspherical supernovae *Collapsars* Long GRBs

Development of rotating massive star models

Massive Star Evolution Code

Code updated from Saio code

(Saio, Nomoto, & Kato 1988; Umeda & Nomoto 2008)

Nuclear reaction network and energy generation

282 species of nuclei from *n*, *p*, to Br

NSE approximation is NOT used.

Mass loss rates for OB stars, Red giants, and WR stars

Schwarzshild criterion for convection

Wide range of mass and metallicity $M_{\rm MS} \ge 9 \ M_{\odot}, Z \ge 0$ Umeda-san's talk for $9 \le M_{\rm MS} \le 11 \ M_{\odot}$ stars

Okita-san's talk for $M_{\rm MS}$ = 110 M_{\odot} (Z=0.004) stars

Rotating Star Model

• Mass coordinate as isobar $M_r \rightarrow M_P$

Radius is determined from the volume enclosed by isobar surface $r(r_0, \theta) = r_0(1 - AP_2(\cos \theta))$

 $\frac{\partial P}{\partial M_P} = -\frac{GM_P}{4\pi r_P^4} f_P$ $r_P = \left(\frac{3}{4\pi} V_P\right)^{1/3}$ $f_P = \frac{4\pi r_{P^4}}{GM_P S_P} \frac{1}{\langle q^{-1} \rangle}$ $\frac{\partial r_P}{\partial M_P} = \frac{1}{4\pi r_P^2 \bar{\Omega}}$ $f_T = \left(\frac{4\pi r_P^2}{S_P}\right)^2 \frac{1}{\langle q^{-1} \rangle \langle q \rangle}$ $\frac{\partial \ln \bar{T}}{\partial \ln P} = \min(\nabla_{ad}, \nabla_{rad} \frac{f_T}{f_P})$ <g>: effective gravity averaged in angular direction $\frac{\partial L_P}{\partial M_P} = \varepsilon_{\text{nucl}} - \varepsilon_{v} + \varepsilon_{\text{grav}}$ $\dot{M}(\omega) = \dot{M}(\omega=0) \left(\frac{1}{1 - \nu/\nu_{min}}\right)^{0.43}$

(e.g., Endal & Sofia 1976, Meynet & Maeder 1997, Heger, Langer, & Woosley 2000)

Mixing and Angular Momentum Transport

• Advection or diffusion?

Advection: Geneva stellar evolution code (e.g. Hirschi, Meynet, & Maeder 2004)

$$\overline{\partial} \frac{d}{dt} (r_P^2 \omega)_{Mr} = \frac{1}{5r_P^2} \frac{\partial}{\partial r_P} \{ \overline{\rho} r_P^4 U(r_P) \} + \frac{1}{r_P^2} \frac{\partial}{\partial r_P} \{ \overline{\rho} v_{\text{shear}} r_P^4 \frac{\partial \omega}{\partial r_P} \}$$

 $u(r_P,\theta) = U(r_P)P_2(\cos\theta)$ Vertical velocity of meridional circulation Approximation form of *U* is described in Maeder & Zahn (1998).

Diffusion: Kepler & STERN (e.g., Heger, Langer, & Woosley 2000) $\frac{\partial \omega}{\partial t} = \frac{1}{i} \frac{\partial}{\partial M_P} \left\{ (4\pi r_P^2 \bar{\rho})^2 v \frac{\partial \omega}{\partial M_P} \right\} - \frac{2\omega}{r_P} \left(\frac{\partial r}{\partial t} \right)_{M_P} \frac{1}{2} \frac{\partial \ln i}{\partial \ln r_P}$ v : Diffusion coefficient by convection and rotational instabilities

Solid rotation in convective layer is still in debate. (Potter, Tout, and Eldridge 2011)

Mixing and Angular Momentum Transport

• Advection or diffusion?

Advection: Geneva stellar evolution code (e.g. Hirschi, Meynet, & Maeder 2004)

$$\overline{\partial} \frac{d}{dt} (r_P^2 \omega)_{Mr} = \frac{1}{5r_P^2} \frac{\partial}{\partial r_P} \{ \overline{\rho} r_P^4 U(r_P) \} + \frac{1}{r_P^2} \frac{\partial}{\partial r_P} \{ \overline{\rho} v_{\text{shear}} r_P^4 \frac{\partial \omega}{\partial r_P} \}$$

 $u(r_P,\theta) = U(r_P)P_2(\cos\theta)$ Vertical velocity of meridional circulation Approximation form of *U* is described in Maeder & Zahn (1998).

Diffusion: Kepler & STERN (e.g., Heger, Langer, & Woosley 2000) $\bar{\rho}\frac{d}{dt}(r_P^2\omega)_{Mr} = \frac{1}{r_P^2}\frac{\partial}{\partial r_P}\{\bar{\rho} \ v \ r_P^4\frac{\partial\omega}{\partial r_P}\}$

v: Diffusion coefficient by convection and rotational instabilities

Solid rotation in convective layer is still in debate. (Potter, Tout, and Eldridge 2011)

Mixing and Angular Momentum Transport

Angular momentum transport

$$\frac{\partial \omega}{\partial t} = \frac{1}{i} \frac{\partial}{\partial M_P} \left\{ (4\pi r_P^2 \bar{\rho})^2 v \frac{\partial \omega}{\partial M_P} \right\} - \frac{2\omega}{r_P} \left(\frac{\partial r}{\partial t} \right)_{M_P} \frac{1}{2} \frac{\partial \ln i}{\partial \ln r_P}$$

Rotational mixing

$$\frac{\partial X_n}{\partial t} = \frac{\partial}{\partial M_P} \left\{ (4\pi r_P^2 \overline{\rho})^2 D \frac{\partial X_n}{\partial M_P} \right\} + \left(\frac{\partial X_n}{\partial t} \right)_{\text{nucl}}$$

i: specific angular moment, *v*: turbulent viscosity $D = D_{conv} + D_{semi} + f_c(D_{DSI} + D_{SHI} + D_{SSI} + D_{ES})$ $v = D_{conv} + D_{semi} + D_{DSI} + D_{SHI} + D_{SSI} + D_{ES}$

- Convection
 (Ledoux criterion)
 - Dynamical shear instability
 Solberg-Hoiland instability
- Semionvection
- Secular shear instability
 - Eddington-Sweet circulation

(e.g., Heger, Langer, & Woosley 2000)

log $\rho_{\rm C}$ -log $T_{\rm C}$ Diagram

Test calculations

 $M_{\rm MS} = 20 \ M_{\odot}, Z = 0.02, \ V_{r0} = 200 \ \rm km \ s^{-1}$

Takashi Yoshida "From Quarks to Supernovae", November 30, 2010

T and ρ Profiles

Test calculations

 $M_{\rm MS} = 20 \ M_{\odot} \ , Z = 0.02, \ V_{r0} = 200 \ \rm km \ s^{-1}$

吉田敬 素核宇融合による計算基礎物理学の進展, 2011年12月5日

10

Solid lines: $V_{r0} = 200 \text{ km s}^{-1}$; Dashed lines: $V_{r0} = 0 \text{ km s}^{-1}$

Enhancement of surface N abundance

•
$$M_{\rm f} = 14.8 \ (16.9) \ M_{\odot}$$

•
$$M_{\rm He\ core} = 6.35\ (6.25)\ M_{\odot}$$

• $M_{\rm CO\ core} = 4.07\ (4.02)\ M_{\odot}$

•
$$M_{\rm Fe\ core} = 1.47\ (1.41)\ M_{\odot}$$

Mass and Angular Momentum Loss

 $M_{\rm MS} = 20 \ M_{\odot}, Z = 0.02, V_{r0} = 0, 200 \ {\rm km \ s^{-1}}$

He burning (red giant) Large loss of M and J

• $J_{\text{final}} \sim 10^{51} \text{ g cm}^2 \text{ s}^{-1}$

Angular Momentum Distribution

$M_{\rm MS} = 20 \ M_{\odot}, Z = 0.02, \ V_{r0} = 200 \ \rm km \ s^{-1}$

Rotational mixing
 Rigid rotation in convective layers
 Angular momentum moves outward
 Angular momentum loss by enhanced mass loss

Angular Momentum Distribution

$M_{\rm MS} = 20 \ M_{\odot}, Z = 0.02, \ V_{r0} = 200 \ \rm km \ s^{-1}$

Smaller angular momentum than other groups

Concluding Remarks

- Test calculation of the evolution of rotating massive stars
- $M_{\text{init}} = 20 M_{\odot}, Z_0 = 0.02, V_{r0} = 200 \text{ km s}^{-1}$
 - From H burning to the onset of the core collapse

Results of other groups are reproduced qualitatively.

- About 90% of angular momentum is lost.
- Enhancement of surface N abundance
- Masses of He, CO, Fe cores

Current problems

- Calculation stops in faster rotation
- Time step control & mass-coordinate resolution
 Effects on mixing in shell burnings