重力崩壊型超新星の下限質量と ONeMg超新星

(Low mass core-collapse SNe & ONeMg SNe)

Hideyuki Umeda, Takashi Yoshida & Koh Takahashi 梅田秀之, 吉田 敬, 高橋亘

Department of Astronomy, University of Tokyo

素核宇融合による計算基礎物理学の進展

December 3-5, 2011, 合歓の郷

Introduction

- Supernovae from Massive Stars
 - Pair Instability SNe (M ~ 140-300 M_{\odot}
 - Iron core collapse (M > ~ $10M_{\odot}$
 - ONeMg SNe ~ $8-10M_{\odot}$?

Iron core collapse (M > ~ $10M_{\odot}$

- What is the lowest mass for Iron CCSN?
- Is the lowest mass progenitor something special?
 - Iron core mass is minimum? So What?

ONeMg SNe ~ 8-10M₀?

- 1D Explosion succeeded !(Electron capture SN)
 - Chandrasekhar critical Mass = 1.47 $(Y_e/0.5)^2 M_{\odot}$
- But, , ,
 - Only one (relatively old) progenitor model
 - なぜなら、計算が大変(super-AGB star; thermal pulses)
 - Mass range seems very narrow
 - maybe no range (?
 - ちょっと重いとNeが燃え、ちょっと軽いと ONeMgコアが 1.47 (Y_e/0.5)² M_o に成長する前に(super-AGB星として) 外層 を失って白色矮星のまま終わる。

Model	$M_{\rm i}$	pre-2DU	post-2DU	comments	fate
S5.0	5.0	0.91	0.84	14 TP	CO WD
S8.5	8.5	1.73	1.02	$10 \mathrm{TP}$	CO WD
$\mathbf{S9}$	9	1.90	1.07	$30 \mathrm{TP}$	ONe WD
S9.5	9.5	2.00	1.11		ONe WD
S10	10	2.14	1.16	$55 \mathrm{TP}$	ONe WD
S10.5	10.5	2.30	1.20		ONe WD
S11	11	2.45	1.23		ONe WD
S11.5	11.5	2.61	1.27	$15 \mathrm{TP}$	ONe WD
S12	12	2.79	1.32	dredge-out	ECSN
S12.5	12.5	2.95	2.95	dredge-out	CCSN
S13.0	13	3.13	3.13	Ne ignition	CCSN
S16.0	16	4.33	4.33	Ne ignition	CCSN
		1 20	0.00		

8-10M_☉ ≠ ONeMg SNe

	E10.5	10.5	3.00	3.00	Ne ignition	CCSN
	E0099	9.0	2.15	1.17	$f_{\rm over} = 0.004$	
_	K8	8.0	1.808	1.168		ONe WD
	K8.5	8.5	1.955	1.247		ONe WD
	K9	9.0	2.130	1.338		ONe WD
	K9.1	9.1	2.161	1.357		ECSN
	K9.2	9.2	2.190	1.548	Ne ignition	CCSN
	K9.3	9.3	2.221	1.603	Ne ignition	CCSN
	K9.4	9.4	2.253	1.690	Ne ignition	CCSN
	K9.5	9.5	2.283	1.799	Ne ignition	CCSN
	K10	10.0	2.439	2.315	Ne ignition	CCSN
	K10.5	10.5	2.598	2.596	Ne ignition	CCSN
	K11	11.0	2.759	2.759	Ne ignition	CCSN

Massive Star Evolution $M_{ini} \ge 10 M_{\odot}$

Yoshida & Umeda 2012

Massive Star Evolution Code (Yoshida & Umeda 2010~

- Stellar evolution model
 - **Based on Saio code** (e.g., Saio, Nomoto, and Kato 1988) From H burning to onset of core-collapse
 - Mass loss rate

Main-sequence Vink et al. $(2001) \propto \mathbb{Z}^{0.69}$, $\mathbb{Z}^{0.64}$

Red giant \longrightarrow de Jager et al. (1988) (Metallicity dependence: $\propto Z^{0.64}$)

Wolf-Rayet stars Nugis & Lamers (2000) (Metallicity dependence: Vink & de Koter 2005)

(Metamenty dependence: vink & de r

Convection criterion

Schwarzschild criterion

Dynamical evolution is included (hopefully?).

log $\rho_{\rm C}$ -log $T_{\rm C}$ Diagram

• Z=0.02 stars

$M_{ini}=10, 11, 12 M_{\odot}$

He-core Mass (単調増加)

definition of Fe-core --- ambiguous

M_r for ⁵⁶Ni production

For $E_{exp} = E_{51} \times 10^{51} \text{ erg}$

	=====	= 10 M	==== 11 M ==	=== 12 M ===
E51	= 0.5;	1.344,	1.421,	1.488
E51	= 1.0;	1.365,	1.436,	1.532
E51	= 2.0;	1.388,	1.450,	1.566

Mass cut (Neutron star mass for $M({}^{56}Ni)=0.07$) ===== 10 M ==== 11 M ==== 12 M === E51 = 0.5; 1.274, 1.351, 1.418 E51 = 1.0; 1.295, 1.366, 1.462 E51 = 2.0; 1.318, 1.380, 1.496

Neutron star mass observation (arXiv:1011.4291)

Minimum ∼ I.2M_☉

$M_{ini} < 10 M_{\odot}$

ONeMg core formation Takahashi, Umeda & Yoshida

Core evolutions

mass fraction

Core evolutions $^{\rm for\ 9Mo}$

4. shell He burning

⊢° 8.9

mass fraction

Core mass @2nd dredge up

