Aspherical Explosion of Massive CO Star

- 56Ni production & Hydro-dynamical Effect -

SHINPEI OKITA,
HIDEYUKI UMEDA & TAKASHI YOSIDA

Type Ic Supernova

Type Ic SN

- Absence of H & He Emission Line
- Core-Collapse Explosion of CO Wolf-Rayet Star ?

Hypernova: E_{ex}~10⁵² erg SN1998bw

> → aspherical scenario (Maeda&Nomoto 2008)

GRB: Some observational samples associated with SN Ic

Woosley & Bloom 2006

Name				SN likeness/	
Burst/SN	z	Peak [mag]	$T_{\rm peak}^{\rm a}$ [day]	designation	References
GRB 980425/1998bw	0.0085	$M_V = -19.16 \pm 0.05$	17	Ic-BL	b
GRB 030329/2003dh	0.1685	$M_V = -18.8 \text{ to } -19.6$	10 – 13	Ic-BL	С
GRB 031203/2003lw	0.1005	$M_V = -19.0 \text{ to } -19.7$	18 – 25	Ibc-BL	d
XRF 020903	0.25	$M_V = -18.6 \pm 0.5$	~15	Ic-BL	e
GRB 011121/2001dk	0.365	$M_V = -18.5 \text{ to } -19.6$	12 – 14	I (IIn?)	f
GRB 050525a	0.606	$M_V \approx -18.8$	12	I	g
GRB 021211/2002lt	1.00	$M_U = -18.4 \text{ to } -19.2$	~14	Ic	h
GRB 970228	0.695	$M_V \sim -19.2$	~17	I	i
XRR 041006	0.716	$M_V = -18.8 \text{ to } -19.5$	16 – 20	I	j
XRR 040924	0.859	$M_V = -17.6$	~11	?	k
GRB 020405	0.695	$M_V \sim -18.7$	~17	Ι	1

SN2007bi

SN2007bi (Gal-Yum+2009)

- Very Luminous Ic SN
- Large amount of ⁵⁶Ni (>4M_{sun}) ⁵⁶Ni→⁵⁶Co→⁵⁶Fe
- Single peak of observed [OI] emission line does **not** suggest asphericity

(Young+2010)

Scenario 1: Pair Instability SN

PISN of ~100M_{sun} He star

- o Can reproduce the yield
- × He envelope remains

Scenario 2: Core Collapse SN

Spherical Explosion of 43M_{sun} CO star

o ⁵⁶Ni amount & Light curve evolusion

(Moriya+2010)

Model & Method 1

Progenitor Model

- $M_{MS} = 110 M_{sun} Z = 0.004$
- Massive CO Wolf-Rayet star deprived of upto He envelope by mass loss wind

$$\rightarrow$$
 M_{CO}= 43.1M_{sun}

Yoshida&Umeda 2011

Hydrodynamics

- Code: 2D axis-symmetric
- Explosion Energy: E_{ex} = 30×10⁵¹ erg ⁵⁶Ni ~ 4M_{sun}
- Inner boundary: absorbing
 Fall-back onto central remnant

Spherical explosion

 56 Ni is totally ejected if $E_{ex} > 25 \times 10^{51}$ erg

Method 2

Aspherical Explosion

- Induced by abrupt energy injection in polar direction
- 7 models calculated with various opening angle (θ_{op})

* Explosion energy is injected only around the polar axis as kinetic form

Table 1: Calculated models									
Name	OA1	OA2	OA3	OA4	OA5	OA6	OA7		
$\theta_{ m op}$	7.03°	11.3°	22.5°	45.0°	67.5°	78.8°	90.0°		
$\theta_{ m op}/90^{\circ}$	5/64	1/8	1/4	1/2	3/4	7/8	1		

Nucleosynthesis

- Post-process
- Network with 282 isotopes

$$(n,p \sim Br)$$

Input: Thermodynamical Histories

$$\{\rho_i(t_n), T_i(t_n)\}$$

(for every differential mass)

Output: Mass Fraction

$$\{X^j{}_i\} \quad (\Sigma_j X^j{}_i = 1)$$

Thermodynamical Histories

Trace Particle Method

- 5200 particles
 (Δm_i~0.001M_{sun})
- Each particle obtains

$$\{\boldsymbol{r}_i(t_n)\}, \{\rho_i(t_n), T_i(t_n)\}$$

Ejecta

Aspherical feature

Aspherical explosion induces large amount of fall-back

Ejected ⁵⁶Ni or ²⁸Si

Steep jump in a certain θ_{op} \rightarrow narrow explosion eject not much ⁵⁶Ni

56Ni

Simple Evaluation of ⁵⁶Ni

$$T_i(^{\forall}t_n) < T_{\mathrm{Ni}} \to X^{56\mathrm{Ni}}{}_i = 0$$

 $T_i(^{\exists}t_n) > T_{\mathrm{Ni}} \to X^{56\mathrm{Ni}}{}_i = 1$

 $T_{\rm Ni} = 5 \times 10^9 \ {\rm K}$

Simple Evaluation

Large θ_{op} : Valid by ~5%

Small θ_{op} : Photo-dissociation

^{‡ 56}Ni → 14⁴He

Fall-back

⁵⁶Ni (isotopes produced around the center): strongly affected by fall-back

OA4 $(\theta_{op}=1/2*90°)$

 $M(ejec) = 28.7 M_{sun}$ $M(^{56}Ni) = 2.42 M_{sun}$

120

140

OA5 (θ_{op}=3/4*90°)

 $M(ejec) = 36.8 M_{sun}$ $M(^{56}Ni) = 2.47 M_{sun}$

time [sec]

OA6 (θ_{op}=7/8*90°)

 $M(ejec) = 40.2 M_{sun}$ $M(^{56}Ni) = 4.01 M_{sun}$

Pretty small

R [cm]

2e+09

3e+09

1e+09

accreted

 $2M_{sun}$

time [sec]

Hydro-dynamical Effect

7M_{Sun} 2e+09 The square of the square of

OA₅

OA6

$$M(ejec) = 28.7 M_{sun}$$

 $M(^{56}Ni) = 2.42 M_{sun}$

$$M(ejec) = 36.8 M_{sun}$$

 $M(^{56}Ni) = 2.47 M_{sun}$

$$M(ejec) = 40.2 M_{sun}$$

 $M(^{56}Ni) = 4.01 M_{sun}$

Summary

<u>Chemical Abundance Ejected</u> <u>by Aspherical Explosion of Massive CO Star</u>

- Aspherical Effect: Ejecta decreases toward small θ_{op}
- Isotopes produced around the center suffer from Fall-back or Hydro-dynamical Effect according to θ_{op}
- ⁵⁶Ni is ejected more than $4M_{sun}$ if $\theta_{op}/90^{\circ} \ge 7/8$
- → Observed sphericity of SN2007bi is not accidental