素核宇融合による計算基礎物理学の進展 - ミクロとマクロのかけ橋の構築 -

Refinement of quark potential models from lattice QCD

格子QCDによるクォーク間ポテンシャルの精密化

Shoichi Sasaki (Univ. of Tokyo)

佐々木 勝一 (東大理)

T. Kawanai, SS, PRL 107 (2011) 091601 T. Kawanai, SS, arXiv: 1110.0888

Renaissance of Hadron Spectroscopy

Why back to quark potential models?

* Charmonium-like XYZ mesons are discovered

"Standard" states can be defined in potential models

S. Godfrey and S. L. Olsen, Ann. Rev. Nucl. Part. Sci. 58, 51 (2008)

→ Does it sound reliable?

Why back to quark potential models?

* Interquark potential in non-relativistic quark potential models

S. Godfrey and N. Isgur, PRD 32, 189 (1985). T. Barnes, S. Godfrey and E. S. Swanson, PRD 72, 054026 (2005)

- Spin-spin, tensor, LS terms appear as corrections in powers of 1/mq
- Spin-dependent potentials determined by one-gluon exchange at tree level
- \rightarrow There are large theoretical ambiguities for higher-mass charmonia

The reliable interquark potential derived from lattice QCD is hence desired at the charm quark mass

Status of lattice QCD spectroscopy

lightest pion mass

 $m_{\pi} = 0.28 \text{ GeV}$

lattice cut off

```
1/a=2.6 GeV
```

G. Bali, S. Collins, C. Ehmann, arXiv:1110.2381

Potential from BS amplitude

• Equal-time BS wave function $_{\phi_{\Gamma}(\mathbf{r})} \phi_{\Xi} (\mathbf{x}) = \sum_{q \in \mathbf{x}} \langle 0 | \bar{q}(\mathbf{x}) | \bar{$

• Schrödinger eq. with non-local potential $-\frac{\nabla^2}{2\mu}\phi_{\Gamma}(\mathbf{r}) + \int dr' U(\mathbf{r},\mathbf{r}')\phi_{\Gamma}(\mathbf{r}') = E_{\Gamma}\phi_{\Gamma}(\mathbf{r}) = E_{\Gamma$

• Velocity expansion $U(\mathbf{r}',\mathbf{r}) = \{V(r) + V_{\mathrm{S}}(r)\mathbf{S}_{Q} \cdot \mathbf{S}_{\overline{Q}} + V_{\mathrm{T}}(r)S_{12} + V_{\mathrm{LS}}(r)\mathbf{L} \cdot \mathbf{S} + \mathcal{O}(\nabla^{2})\}\delta(\mathbf{r}'-\mathbf{r})^{1.0}_{r[\mathrm{fm}]}$

 $U(\mathbf{r}',\mathbf{r}) = \left\{ V(r) + V_{\mathrm{S}}(r)\mathbf{S}_{Q} \cdot \mathbf{S}_{\bar{Q}} + V_{\mathrm{T}}(r)S_{12} + V_{\mathrm{LS}}(r)\mathbf{L} \cdot \mathbf{S} + \mathcal{O}(\nabla^{2}) \right\} \delta(\mathbf{r}' - \mathbf{r})$

N. Ishii, S. Aoki, and T. Hatsuda, Phys. Rev. Lett. 99 (2007) 022001. S. Aoki, T. Hatsuda and N. Ishii, Prog. Theor. Phys. 123 (2010) 89

$Q\overline{Q}$ potential from BS wave func.

• Ikeda-Iida, arXiv:1011.2866 & 1102.2097

a² d

Inconsistent with the Wilson loops in the $m_Q \rightarrow \infty$ limit

Novel determination of quark mass

• Kawanai-Sasaki, PRL 107 (2011) 091601

$$\left\{-\frac{\nabla^2}{m_Q} + V_{Q\overline{Q}}(r) + \mathbf{S}_Q \cdot \mathbf{S}_{\overline{Q}} V_{\rm spin}(r)\right\} \phi_{\Gamma}(r) = E_{\Gamma} \phi_{\Gamma}(r) \quad \text{for} \quad \Gamma = \mathrm{PS}, \mathrm{V}$$

- Q. How can we determine a quark mass in the Schrödinger equation?
- A. Look into asymptotic behavior of wave functions at long distances

$$V_{\rm spin}(r) - \Delta E_{\rm hyp} = \frac{1}{m_Q} \left(\frac{\nabla^2 \phi_{\rm V}(r)}{\phi_{\rm V}(r)} - \frac{\nabla^2 \phi_{\rm PS}(r)}{\phi_{\rm PS}(r)} \right)$$

Under a simple, but reasonable assumption of $\lim_{r o \infty} V_{
m spin}(r) = 0$

$$m_{Q} = \lim_{r \to \infty} \frac{1}{\Delta E_{\rm hyp}} \left(\frac{\nabla^{2} \phi_{\rm PS}(r)}{\phi_{\rm PS}(r)} - \frac{\nabla^{2} \phi_{\rm V}(r)}{\phi_{\rm V}(r)} \right)$$

Interquark potential at finite quark mass

• Kawanai-Sasaki, PRL 107 (2011) 091601

Interquark potential at finite quark mass

• Kawanai-Sasaki, PRL 107 (2011) 091601

Consistent with the Wilson loops in the $m_q \rightarrow \infty$ limit

How to treat heavy quarks

Heavy quark mass introduces discretization errors of O((ma)ⁿ)

✓ At charm quark, it becomes severe:

 $m_c \sim 1.5 \text{ GeV}$ and $1/a \sim 2 \text{ GeV}$, then $m_c a \sim O(1)$

Relativistic heavy quark (RHQ) approach:

A.X. El-Khadra, A.S. Kronfeld, P.B. Mackenzie (1997)

✓ All O((ma)ⁿ) and O(a Λ) errors are removed by the appropriate choice of six canonical parameters {m₀, ζ , r_t, r_s, C_B, C_E}

 $S_{\text{lat}} = \sum_{n,n'} \bar{\psi}_n \mathcal{K}_{n,n'} \psi_{n'} \qquad \text{explicit breaking of axis-interchange symmetry}$ $\mathcal{K} = m_0 + \gamma_0 D_0 + \zeta \gamma_i D_i - \frac{r_t}{2} D_0^2 - \frac{r_s}{2} D_i^2 + C_B \frac{i}{4} \sigma_{ij} F_{ij} + C_E \frac{i}{2} \sigma_{0i} F_{0i}$

✓ We follow the Tsukuba procedure to determine parameters

S. Aoki, Y. Kuramashi, S.-I. Tominaga (1999)

Tuning RHQ parameters for full QCD

- RHQ action (Tsukuba-type) with 5 parameters
 - * PACS-CS configurations at m_{π} =156 MeV
 - * Relativistic Heavy Quark (RHQ) action for charm
 - ✓ 32³ x 64 lattice
 - ✓ a = 0.0907(13) fm
 - ✓ La ~ 2.9 fm
 - ✓ 198 configs

$$\Rightarrow \frac{1}{4} \left(M_{\eta_c} + 3M_{J/\psi} \right) = 3.070(1) \text{ GeV}$$

- $\Rightarrow \Delta M_{\rm hyp} = 114(1) {\rm MeV}$
 - $\checkmark c_{\text{eff}}^2 = 1.04(5)$

Namekawa et al., (PACS-CS), arXiv:1104.4600

 $\eta_{c}(0^{++}) = J/\psi(1^{++}) = \chi_{c0}(0^{++}) = \chi_{c1}(1^{++}) = h_{c}(1^{++})$

M_{ccbar} [MeV.

Charmonium potential from full QCD

• Kawanai-Sasaki, arXiv:1110.0888

* PACS-CS configurations at m_{π} =156 MeV

Charmonium potential from full QCD

Kawanai-Sasaki, arXiv:1110.0888

Comment on two topics

- Revisit of "quark mass"
- Spin-spin potential issue in the Wilson loop approach

What does "quark mass" correspond to ?

Spatial information = Temporal information

M_{eff} [GeV]

Spin-dependent potentials

Comment on spin-spin potential

0.5

 $V(r) = V_{c\bar{c}}(r) + \mathbf{S}_Q \cdot \mathbf{S}_{\bar{Q}} V_{\rm spin}(r)$

Wilson loop approach

Note: M(0⁻) < M(1⁻)

Y. Koma and M. Koma, NPB769 (2007) 79

Wilson-loop approach may spoil δ -type repulsive interaction

Quark mass dependence on spin-spin potential

Our conjecture

Towards the **bottomonium** system

M_{bbbar} [MeV]

spin-spin bbbar potential from full QCD

needs a confirmation through lattice cutoff dependence studies

Summary

- New method to calculate QQ^{bar} potential at finite quark mass
 - ✓ We propose a self-consistent determination of quark mass from the BS wave function
 - ✓ We confirm that spin-independent potential is consistent with the Wilson loop result in the $m_Q \rightarrow \infty$ limit
- Application to determine charmonium potential in full QCD
 - \checkmark Central potential resembles the NRp model
 - ✓ Spin-spin potential properly exhibits the short range repulsive interaction
 - ✓ Bottomonium potential (now under way)

Improves interquark potentials from lattice QCD

Refines a guideline of "exotic" quarkonia XYZ