
Refinement of quark potential models 
from lattice QCD

格子QCDによるクォーク間ポテンシャルの精密化
Shoichi Sasaki (Univ. of Tokyo)

佐々木　勝一　(東大理)

素核宇融合による計算基礎物理学の進展
 - ミクロとマクロのかけ橋の構築 -

河内太一（BNL滞在中）

T. Kawanai, SS, PRL 107 (2011) 091601 
T. Kawanai, SS, arXiv: 1110.0888



Renaissance of Hadron Spectroscopy

X(3940) at Belle
e+e− → J/Ψ + X
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MX = 3943 ± 6 ± 6 MeV, ΓX < 52 MeV at 90% c.l.

X → DD̄∗ and not X → DD̄, X → J/ψω

X(3872) at CDF
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Y (3940) at Belle
B → KY → KπππJ/Ψ
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S.K. Choi et al. (Belle Coll.), Phys. Rev. Lett. 94 (2005) 182002

MY = 3943 ± 11 ± 13 MeV, ΓY = 87 ± 22 ± 26 MeV 58±11 evts, 8σ

not Y → DD̄∗ and not X → DD̄

Y(3940)

Z(3930) at Belle
γγ → DD̄

K. Abe et al. (Belle Coll.), hep-ex/0507033; S. Uehara et al. (Belle Coll.), hep-ex/0512035

MZ = 3931 ± 4 ± 2 MeV, ΓZ = 20 ± 8 ± 3 MeV 5.5σ

Z(3930)

Y (4260) at BaBar
e+e− → γISRY → γISRJ/ψππ
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B. Aubert et al. (BaBar Coll.), Phys. Rev. Lett. 95 (2005) 142001

MZ = 4259 ± 8 ± 4 MeV, ΓZ = 88 ± 23 ± 5 MeV 125±23 evts, 5.5σ

Γ(Y → e+e−)Br(Y → J/ψππ) = 5.5 ± 1.0+0.8
−0.7 eV

Y(4260)

BaBar and the Ds
*
J(2317)+ and DsJ(2457)+ July 11, 2003 D.C. Williams 44

New Decay Mode From Belle

Evidence for DsJ(2457)+ ! Ds " from both B decays and continuum (preliminary)

Consistent with either J = 1+ or 1–

DsJ(2457)+
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s(2112)+π0]

= 0.38± 0.11 (stat)± 0.04 (syst)

DsJ(2457)

BaBar and the Ds
*
J(2317)+ and DsJ(2457)+ July 11, 2003 D.C. Williams 21

Fit to Mass

Signal Gaussian on top of a polynomial

(statistical errors only)

Conservative systematic
uncertainty on mean ~3 MeV

Ds*J(2317)+

D∗
sJ(2317)+σ = 8.6 ± 0.4 MeV

m = 2316.8 ± 0.4 MeV
DsJ*(2317)

distribution from ∆E sidebands (|∆E ± 0.070| < 0.034 GeV). Here a strong enhancement
is evident near M(πψ′) ∼4.43 GeV.
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FIG. 2: The M(π+ψ′) distribution for events in the Mbc-∆E signal region and with the K∗ veto

applied. The shaded histogram show the scaled results from the ∆E sideband. The solid curves
show the results of the fit described in the text.

We perform a binned maximum-likelihood fit to the M(πψ′) invariant mass distribution
using a relativistic S-wave Breit-Wigner (BW) function to model the peak plus a smooth
phase-space-like function fcont(M), where fcont(M) = Ncontq∗(Q1/2 + A1Q3/2 + A2Q5/2).
Here q∗ is the momentum of the π+ in the πψ′ rest frame and Q = Mmax − M , where
Mmax = 4.78 GeV is the maximum M(πψ′) value possible for B → Kπψ′ decay. The
normalization Ncont and two shape parameters A1 and A2 are free parameters in the fit.
This form for fcont(M) is chosen because it mimics two-body phase-space behavior at the
lower and upper mass boundaries. (Since the M(πψ′) distribution for the non-peaking B-
decay events and the ∆E sideband events have a similar shape, we represent them both
with a single function.)

The results of the fit, shown as smooth curves in Fig. 2, are tabulated in Table I. The
fit quality is χ2 = 80.2 for 94 degrees of freedom. The significance of the peak, determined
from the change in log likelihood when the signal and its associated degrees of freedom are
removed from the fit, is 6.5σ.

TABLE I: Results of the fit shown in Fig. 2.

Nsig Ncont BW Mass (GeV) Γ (GeV)

121 ± 30 766 ± 39 4.433 ± 0.004 0.045+0.018
−0.013

6

Z+(4430)



Why back to quark potential models？
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Figure 1: Spectrum of the known charmonium states. Blue squares represent
the charmonium states that are established and well measured, red squares show
charmonium(-like) states which were discovered recently at the B-factories. The
empty rectangles indicate the prediction by the potential models [2]. The horizontal
line shows the open-charm threshold.

2 X(3872)

The X(3872) meson was discovered by Belle [3] in B± → X(3872)K± with X(3872)→
J/ψπ+π− in 2003, and quickly confirmed by the BaBar, CDF and D0 experiments [3].
Its mass is known very precisely, 3871.4± 0.6 MeV/c2, and its width is less than 2.3

MeV at 90% confidence level. This state is very close to the D∗0D
0

threshold which
is at (3871.8 ± 0.4) MeV/c2. This resonance was also observed in the final state
J/ψγ [4], which implies that its C quantum number is equal to +1. The study of the
π+π− invariant mass distribution by Belle and an angular analysis by CDF shows that
JPC = 1++ is favored (although 2++ is still possible) [4]. It has also to be noted that
a search for a charged partner was performed by BaBar, but no signal was found [4].

The BaBar experiment has recently performed an update of the study of the
decays of B+ → X(3872)K+ and B0 → X(3872)K0 with X(3872) → J/ψπ+π− [5],
using 413 fb−1 of data. The invariant masses of the J/ψπ+π− combination are shown
in Fig. 2 for the two channels. A clear signal is observed in the charged channel,

2

! Charmonium-like XYZ mesons are discovered

ANRV358-NS58-03 ARI 18 September 2008 23:37
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Figure 2
Schematic representations of molecular states, diquark-diantiquark tetraquark mesons, and quark-antiquark-
gluon hybrids.

identify unambiguously a light multiquark state in an environment of many broad and often
overlapping conventional states. The charmonium spectrum is better defined, so new types of states
can potentially be more easily delineated from conventional charmonium states. The observation
of the X(3872), the first of the XYZ particles to be seen, allowed researchers to hope that a
multiquark state had definitively been observed.

Two generic types of multiquark states have been described in the literature. The first is a
molecular state, sometimes referred to as a deuson (41), that comprises two charmed mesons
bound together to form a molecule. These states are by nature loosely bound. Molecular states
bind through two mechanisms: quark/color exchange interactions at short distances and pion
exchange at large distance (5, 41, 42) (see Figure 2), although pion exchange is expected to
dominate (5). Molecular states are generally not isospin eigenstates, resulting in distinctive decay
patterns. Because the mesons inside the molecule are weakly bound, they tend to decay as if they
are free. The details of this process are reviewed by Swanson (5).

The second type of multiquark state is a tightly bound four-quark state, known as a tetraquark,
which is predicted to have properties different from those of a molecular state. In the model of
Maiani et al. (43) the tetraquark is described as a diquark-diantiquark structure in which the quarks
group into color-triplet scalar and vector clusters and in which the interactions are dominated by
a simple spin-spin interaction (see Figure 2). Here, strong decays are expected to proceed via
rearrangement processes, followed by dissociation, that give rise to (for example) decays such
as X → ρJ/ψ → ππJ/ψ or X → DD̄∗ → DD̄γ . A prediction that distinguishes multiquark
states containing a cc̄ pair from conventional charmonia is the possible existence of multiplets that
include members with nonzero charge (e.g., [cuc̄d̄]), strangeness (e.g., [cd cs]), or both (e.g., [cucs])
(44).

2.3. Charmonium Hybrids
Hybrid mesons are states characterized by an excited gluonic degree of freedom (see Figure 2),
which have been described by many different models and calculational schemes (45). A compelling
description, supported by lattice QCD (46, 47), views the quarks as moving in adiabatic potentials
produced by gluons by analogy to the atomic nuclei in molecules moving in the adiabatic potentials
produced by electrons. The lowest adiabatic surface leads to the conventional quarkonium spec-
trum, whereas the excited adiabatic surfaces result from putting the gluons into more complicated
color configurations. In the flux-tube model (48), the lowest excited adiabatic surface corresponds
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S. Godfrey and S. L. Olsen, 
Ann. Rev. Nucl. Part. Sci. 58, 51 (2008)

XYZ mesons could not be simply 
explained by a constituent quark 
description as quark and anti-
quark bound states

“Exotic” = “Non-standard”?

“Standard” states can be defined in potential models　
→　Does it sound reliable?

BaBar Collaboration

? ?
?

?

?



! Interquark potential in non-relativistic quark potential models

Vcc̄ = −4
3

αs

r
+ σr +

32παs

9m2
q

δ(r)Sq · Sq̄ +
1

m2
q

��
2αs

r3
− b

2r

�
L · S +

4αs

r3
T

�

Cornell potential spin-dependent potential 

S. Godfrey and N. Isgur, PRD 32, 189 (1985). 
T. Barnes, S. Godfrey and E. S. Swanson, PRD 72, 054026 (2005)

• Spin-spin, tensor, LS terms appear as corrections in powers of 1/mq 
• Spin-dependent potentials determined by one-gluon exchange at tree level
→ There are large theoretical ambiguities for higher-mass charmonia 

The reliable interquark potential derived from lattice 
QCD is hence desired at the charm quark mass

Why back to quark potential models？
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FIG. 11. The predicted spectrum, together with the experimental values on ensemble 1©, see Table I.

56(8) MeV on ensemble6 2©, in agreement with the ex-
perimental value of 49(4) MeV. In view of the disagree-
ment of the 1S splitting this is quite surprising since one
would have expected a lot of the systematics to cancel
from the ratio of the 2S hyperfine splitting over the 1S
splitting, see Eq. (35). We may therefore wonder whether
either the physical ηc or the Ψ(2S) states are unusually
low, due to contributions from quark line disconnected
diagrams. In the first case our neglection of c̄c annihila-
tion diagrams may be relevant while in the second case
omitting q̄q creation (and the use of unphysically heavy
light quark masses) would be the dominant effect(s), see
Secs. IV and V below, respectively.
We remark that we also underestimate the P -wave

finestructure. This is expected too and again mostly due
to lattice spacing effects and an unrealistic sea quark con-

6 On ensemble 3© where the radial excitations are seriously af-
fected by the finite volume we get ∆m2S = 177(66) MeV.

tent. We also notice that in our approximation where the
open charm thresholds are much higher than in nature
the Z(3934) (recently renamed into χc2(2P ) [49]) may in-
deed be associated with the χ′

c2 state while the X(3872)
certainly is lighter than one would have expected from
an excited P -wave. However, in the first case we cannot
exclude the possibility that we have misidentified a 3++

state as 2++, in particular since this comes out lighter
than the other two χ′

c multiplet masses. Finally, the
proximity of the two 1−+ states as well as of the two
2+− states may indicate a hybrid nature of these spin-
exotic charmonia. We have not detected such indications
in any of the other channels. With the exception of the
A2 (J = 3), in these cases the radial excitations are lower
in energy than these spin-exotic states.

G. Bali, S. Collins, C. Ehmann, arXiv:1110.2381

Nf=2 Clover mπ＝0.28 GeV
lightest pion mass

1/a=2.6 GeV
lattice cut off

Status of lattice QCD spectroscopy



     Potential from BS amplitude 
• Equal-time BS wave function

• Schrödinger eq. with non-local potential

• Velocity expansion

How to calculate ccbar potential？

1. Equal-time BS wavefunction

2. Schrödinger equation with non-local potential 

3. Velocity expansion 

φΓ(r) =
�

x

�0|q(x)Γq(x + r)|qq̄;JPC�

�

x,x�,y�

�0|q̄(x, t)Γq(x + r, t) (q̄(x�, tsrc)Γq(y�, tsrc))
† |0�

=
�

n

An�0|q̄(x)Γq(x + r)|n�e−MΓ
n (t−tsrc)

t�t0−−−→ A0φΓ(r)e−MΓ
0 (t−tsrc)

−∇
2

2µ
φΓ(r) +

�
dr�U(r, r�)φΓ(r�) = EΓφΓ(r)

time

x

x+ r

S. Aoki, T. Hatsuda and N. Ishii, Prog. Theor. Phys. 123 (2010) 89.
Y. Ikeda and H. Iida, arXiv:1102.2097 [hep-lat].

U(r�, r) = {V (r) + VS(r)SQ · SQ + VT(r)S12 + VLS(r)L · S + O(∇2)}δ(r� − r)

φΓ(r) =
�

x

�0|Q̄(x)ΓQ(x + r)|QQ̄�

G4pt =
�

x,x�,y�

�0|Q̄(x, t)ΓQ(x + r, t)(Q̄(x�, tsrc)ΓQ(y�, tsrc))†|0�

=
�

x

�

n

An�0|Q̄(x)ΓQ(x + r)|n�e−MΓ
n (t−tsrc)

t�tsrc−−−−→ A0φΓ(r)e−MΓ
0 (t−tsrc)

−∇
2

2µ
φΓ(r) +

�
dr�U(r, r�)φΓ(r�) = EΓφΓ(r)

U(r�, r) =
�
V (r) + VS(r)SQ · SQ̄ + VT(r)S12 + VLS(r)L · S + O(∇2)

�
δ(r� − r)

N. Ishii, S. Aoki, and T. Hatsuda, Phys. Rev. Lett. 99 (2007) 022001.
S. Aoki, T. Hatsuda and N. Ishii, Prog. Theor. Phys. 123 (2010) 89

N-N potential



• Ikeda-Iida, arXiv:1011.2866 & 1102.2097  

0.054

0.052

0.050

0.048

0.046

0.044

0.042

0.040

a
2
!

1.000.980.960.940.920.90

mPS/mV

 Ikeda-Iida
 Wilson loop (Koma-Koma)

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0  2  4  6  8  10  12

m
q(

V(
r)-

E)
[a

-2
]

r[a]

(a) PS

!=0.1320
!=0.1420
!=0.1480
!=0.1520

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0  2  4  6  8  10  12

m
q(

V(
r)-

E)
[a

-2
]

r[a]

(b) V

!=0.1320
!=0.1420
!=0.1480
!=0.1520

Figure 2: Plots of ∇2φ(r)/φ(r) = 2µ(V (r) − E) in PS channel (a)
and V channel (b) for each quark mass. The potentials show the
linear plus Coulomb form.

and 3 (V2(r)). The values of the string tension obtained in
this study are comparable to those predicted from Wilson
loop within the errors, while Coulomb coefficients in V1(r)
are larger than those predicted from Wilson loop. Since
our simulation includes all the quark mass effects, V1(r) is
modified by the higher order effect of 1/mq expansion. As
shown in Table 3, if we employ the fit function V2(r) in
which O(1/mq) terms are taken into account, the Coulomb
coefficients become smaller and are comparable to the val-
ues from Wilson loop. The fit functions V2(r) are shown
in Fig. 3 with solid curves.

5. Discussion and summary

We have studied the inter-quark potentials between
a quark and an anti-quark (q̄-q potentials) from the q̄-
q Nambu-Bethe-Salpeter (NBS) wave functions. For this
purpose, we have utilized the method which has been re-
cently developed in the calculation of nuclear force from
QCD [8, 9]. We have calculated the NBS wave functions
for the q̄-q systems with four different quark masses in
pseudo-scalar and vector channels and obtained the q̄-q
potentials through the effective Schödinger equation. In
this framework, the q̄-q potentials basically contains full
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Figure 3: Plots of the potential with arbitrary constatnt energy shift
V (r) − E = ∇2φ(r)/(2µφ(r)) in PS channel (a) and V channel (b)
for each quark mass.

quark motions with the finite masses. As a result, we have
found that the shapes of the q̄-q potentials are the linear
plus Coulomb form which is similar to the infinitely heavy
Q̄-Q potential obtained from Wilson loop.

For the fitting, we have employed two types of fitting
functions. One is the linear plus Coulomb form regarded
as the leading order (LO) terms in the 1/mq expansion.
The other function includes the next leading order (NLO)
terms in addition to LO terms. The fitting results with
LO terms reveal that the Coulomb coefficients depend on
the quark masses and are larger than those predicted from
Wilson loop. On the other hand, if we have employed the
NLO terms together with the LO terms, the Coulomb co-
efficients become smaller and are comparable to the value
from Wilson loop. With the both fitting functions, we
have obtained the string tension which is comparable to
the value from Wilson loop.

This is the first step to study the q̄-q potentials from the
NBS wave functions, and the main purpose of the present
study is to show that the method is applicable to the q̄-q
potentials. We find that the obtained q̄-q potential has the
basic property of that obtained from Wilson loop. There-
fore, this method can be used for the study of the q̄-q
potentials with finite quark masses.

4

Cornell-like behavior!

Inconsistent with the Wilson loops in the mQ→ ∞ limit

Wilson loops

     potential from BS wave func. QQ

∇2φQQ̄(r)
φQQ̄(r)

= mQ [V (r) − E]

mQ =
MV

2



• Kawanai-Sasaki, PRL 107 (2011) 091601

Q. How can we determine a quark mass in the Schrödinger equation?

A. Look into asymptotic behavior of wave functions at long distances 

mQ = lim
r→∞

1
∆Ehyp

�
∇2φPS(r)
φPS(r)

− ∇
2φV(r)
φV(r)

�

Vspin(r) −∆Ehyp =
1

mQ

�
∇2φV(r)
φV(r)

− ∇
2φPS(r)
φPS(r)

�

for Γ = PS, V
�
− ∇

2

mQ
+ VQQ(r) + SQ · SQVspin(r)

�
φΓ(r) = EΓφΓ(r)

Novel determination of quark mass

lim
r→∞

Vspin(r) = 0Under a simple, but reasonable assumption of 



• Kawanai-Sasaki, PRL 107 (2011) 091601

lim
r→∞

Vspin(r) = 0
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How to treat heavy quarks
❖ Heavy quark mass introduces discretization errors of O((ma)n)

✓ At charm quark, it becomes severe: 

mc ～1.5 GeV and 1/a ～2 GeV, then mca ～ O(1)

❖ Relativistic heavy quark (RHQ) approach:
A.X. El-Khadra, A.S. Kronfeld, P.B. Mackenzie (1997)

✓ All O((ma)n) and O(aΛ) errors are removed by the appropriate choice 
of six canonical parameters {m0, ζ, rt, rs, CB, CE}

✓ We follow the Tsukuba procedure to determine parameters
S. Aoki, Y. Kuramashi,  S.-I. Tominaga (1999) 

Slat =
�

n,n�

ψ̄nKn,n�ψn�

K = m0 + γ0D0 + ζγiDi −
rt

2
D2

0 −
rs

2
D2

i + CB
i

4
σijFij + CE

i

2
σ0iF0i

explicit breaking of axis-interchange symmetry



• RHQ action (Tsukuba-type) with 5 parameters
! PACS-CS configurations at mπ=156 MeV
! Relativistic Heavy Quark (RHQ) action for charm

✓ 323 x 64 lattice
✓ a = 0.0907(13) fm
✓ La ~ 2.9 fm
✓ 198 configs

➡  

➡  

✓  

Tuning RHQ parameters for full QCD

c2
eff = 1.04(5)

Namekawa et al., (PACS-CS), arXiv:1104.4600

1
4

�
Mηc + 3MJ/ψ

�
= 3.070(1) GeV

∆Mhyp = 114(1)MeV
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Charmonium potential from full QCD
• Kawanai-Sasaki, arXiv:1110.0888

! PACS-CS configurations at mπ=156 MeV

V (r) = −A

r
+ σr + V0
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Charmonium potential from full QCD
Result; spin-independent ccbar potential 
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▶ The charmonium potential obtained 
from the BS wave function resembles 
the NRp model.

This work Static NRp model
A 0.714(30) 0.515(2) 0.7281

√σ [GeV] 0.434(11) 0.430(1) 0.3775

mq [GeV] 1.81(7) ∞ 1.4794

Non-relativistic potential (NRp) model
T.Barnes, S. Godfrey, E.S. Swanson, PRD72 (2005) 054026

▶ String breaking is not observed 

Result; spin-spin ccbar potential 
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FIG. 3: Spin-spin charmonium potential calculated from the
BS wave function. The dashed, dotted and dash-dotted curve
corresponds to the fitting result for Yukawa, exponential,
Gausian type function, respectively. The all shaded bands
show the statistical fitting uncertainty calculated by the jack-
knife method. For comparison, the phenomenological poten-
tial employed in a NRp model [4] is also included as solid
curve.

TABLE III: Fitting function to spin-spin charmonium poten-
tial and resulting each parameters.

functional form α β χ2/ndf
Yukawa-type 0.321(45) 1.07(16) GeV 0.04
Exponential-type 0.78(10) GeV 1.95(14) GeV 0.11
Gaussian-type 0.258(14) GeV 0.840(54) GeV2 1.03

charmonium potential is also important to introduce the
hyperfine splitting for higher-mass charmonium states
with the non-zero angular momentum, such as small mass
difference between the spin averaged χc state and hc

state. The point like interaction ∝ δ(r) induced by one
gluon exchange according to the Fermi-Breit formula can-
not give the mass splitting to the non-zero angular mo-
mentum states whose wave function vanishes at the ori-
gin. In phenomenological potential model, actually non-
point like interaction induced by an O(v2) expansion is
employed [4]. Spin-spin charmonium from BS wave func-
tion satisfies the qualitative conditions requested from
the structure of the charmonium spectroscopy.

In contrast of the case of the spin-independent poten-
tial, the spin-spin potential obtained from lattice QCD is
slightly different from the phenomenological one. As we
mentioned before, the phenomenological potential is ba-
sically determined by perturbative one-gluon exchange.
In this sense, the realistic spin-dependent potential from
first principles of QCD can provide new and valuable in-
formation to the NRp models. An improvement of the
spin-dependent potential would modify theoretical pre-
dictions about the higher-mass charmonium states.

To examine the appropriate functional form for the
spin-spin potential, we have tried three types of func-

tional forms:

VS(r) =






α exp(−βr)/r : Yukawa form
α exp(−βr) : Exponential form
α exp(−βr2) : Gaussian form

(8)

We then determine which functional form can give a
reasonable fit over the range of r/a from 2 to 10. All
fitting results are summarize in Table III. The long-
range screening observed in the spin-spin potential is
more easily accommodated by the Yukawa form or the
exponential-type form than the Gaussian form that is of-
ten employed in the NRp model. Although the Yukawa
form provides the smaller χ2/ndf than the exponential
form, it is mainly caused by the short-range behav-
ior of the spin-spin potential. As we mentioned previ-
ously, the short-range part in the potential suffers much
from the discretization error, which can be monitored by
signs of the rotational breaking that appears seriously
at short distances. In this sense, both the Yukawa and
exponential-type forms equally well describe the data
points of the spin-spin charmonium potential obtained
from lattice QCD.

In this letter, we present both spin-independent and
-dependent part of the interquark potential at the charm
quark mass from the BS wave function in dynamical lat-
tice QCD simulations. The spin-independent charmo-
nium potential obtained from the BS wave function has
the good agreement with the one used in the phenomeno-
logical model. On the other hand, though the spin-spin
potential exhibits the short range repulsive interaction
which is phenomenologically required by the charmonium
spectroscopy, its shape is slightly different from the phe-
nomenological one. Therefore spin-dependent potential
from lattice QCD can provide new information to the
NRp models.

We will next determine the every terms of charmo-
nium potential including the tensor and spin-orbit forces
by applying this BS amplitude method to P -wave and
D-wave charmonium state with respect to the structure
of the spinor such as S12φΓ(r). To obtained the detailed
information of the short range behavior of the charmo-
nium potential, a important step is taking the contin-
uum limit or improvement of the derivative operator to
remove the discretization error at short distances. Once
the every terms of the realistic charmonium potential is
determined, we can make a more precise prediction to
the spectroscopy of higher-mass charmonium states in
the same framework as quark potential model.

We would like to thank H. Iida and Y. Ikeda for fruitful
discussions. T.K. is supported by Grant-in-Aid for the
Japan Society for Promotion of Science (JSPS) Research
Fellows (No. 22-7653). S.S. is supported by the JSPS
Grant-in-Aids for Scientific Research (C) (No. 19540265
and No. 23540284) and Scientific Research on Innovative
Areas (No. 21105504).

▶  Short range, but non-point like, repulsive interaction
▶  A difference appears in the spin-spin potential

 Fitting function α β χ/ d.o.f
Yukawa 0.297(12) 0.982(47) GeV 0.89

exponential 0.866(29) GeV 2.067(37) GeV 0.45
Gaussian 0.309(7) GeV 1.069(17) GeV2 12.40

Spin-independent  ccbar potential spin-spin ccbar  potential 

Non-relativistic potential model
T.Barnes, S. Godfrey, E.S. Swanson, PRD72 (2005) 054026

lattice results Acc̄ = 0.813(22)
√

σcc̄ = 0.394(7) GeV

ANRp = 0.7281
√

σNRp = 0.3775 GeV
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TABLE III: Results of fitted parameters for the spin-spin po-
tential with three types of the fitting functional form.

functional form α β χ2/dof
Yukawa-type 0.287(8) 0.894(32) GeV 7.28
Exponential-type 0.825(19) GeV 1.982(24) GeV 1.46
Gaussian-type 0.313(26) GeV 1.02(95) GeV2 25.75

the Wilson loop approach fails to reproduce the correct

behavior of the spin-spin interaction, since the spin-spin

potential becomes attractive at short distances [8].

In contrast of the case of the spin-independent poten-

tial, the spin-spin potential obtained here is absolutely

different from a repulsive δ-function potential generated

by perturbative one-gluon exchange, which is widely

adopted in the NRp models. However, such the contact

form ∝ δ(r) of the Fermi-Breit type potential is not reli-

able since the point-like spin-spin interaction can not give

a finite hyperfine mass splitting of the P - and higher-wave

charmonium states [1]. Indeed, the finite-range spin-spin

potential described by the Gaussian form is adopted in

Ref. [5], where many properties of conventional charmo-

nium states at higher masses are predicted.

This phenomenological spin-spin potential is also plot-

ted in Fig. 3 for comparison. There still remains a slight

difference between the spin-spin potential from first prin-

ciples QCD and the phenomenological one. In this sense,

the reliable spin-dependent potential derived from lattice

QCD can provide new and valuable information to the

NRp models. This improvement of the spin-dependent

potential will help in making accurate theoretical predic-

tions about the higher-mass charmonium states.

To examine the appropriate functional form for the

spin-spin potential, we have tried three types of func-

tional forms:

VS(r) =






α exp(−βr)/r : Yukawa form

α exp(−βr) : Exponential form

α exp(−βr2
) : Gaussian form.

(8)

We then determine which functional form can give a rea-

sonable fit over the range of r/a from 2 to 10. All re-

sults of correlated fits are summarized in Table III. The

long-range screening observed in the spin-spin potential

is more easily accommodated by the Yukawa form or the

exponential form than the Gaussian form that is often

employed in the NRp model. Although the exponential

form provides the smaller χ2/dof than the Yukawa form,

a solid conclusion requires more accurate information on

the short-range behavior of the spin-spin potential.

In this Letter, we have studied both spin-independent

and -dependent part of the charmonium potential by

means of the BS wave function of 1S charmonium

states in dynamical lattice QCD simulations. The spin-

independent charmonium potential obtained from lattice

QCD with almost physical quark masses is quite simi-

lar to the one used in NRp models. The spin-spin po-

tential, which is, for the first time, determined in dy-

namical lattice simulations, properly exhibits the short

range repulsive interaction. Its r-dependence, however, is

slightly different from the phenomenological one adopted

in Ref. [5]. Thus, our results of the charmonium poten-

tial, which are derived from first principles QCD, suggest

that properties of higher-mass charmonium states pre-

dicted in quark potential models may change. We plan

to extend our research to determine all spin-dependent

terms in the charmonium potential, including the tensor

and spin-orbit forces and also to address all the possible

systematic uncertainties described in the text.

We acknowledge the PACS-CS collaboration and

ILDG/JLDG [22] for providing us with the gauge configu-

rations. We would also like to thank H. Iida, Y. Ikeda and

T. Hatsuda for fruitful discussions. This work was par-

tially supported by JSPS/MEXT Grants-in-Aid (No. 22-

7653, No. 19540265, No. 21105504 and No. 23540284).
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† Electronic address: ssasaki@phys.s.u-tokyo.ac.jp
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in pNRQCD becomes attractive at short distances [8].

In contrast of the case of the spin-independent poten-

tial, the spin-spin potential obtained here is absolutely

different from a repulsive δ-function potential generated

by perturbative one-gluon exchange, which is widely

adopted in the NRp models. However, such the con-

tact form ∝ δ(r) of the Fermi-Breit type potential is not

reliable since the point-like spin-spin interaction can not

give a finite hyperfine mass splitting of the P - or higher-

wave charmonia [1]. Indeed, the finite-range spin-spin

potential described by the Gaussian form is adopted in

Ref. [5], where many properties of conventional charmo-

nium states at higher masses are predicted.

This phenomenological spin-spin potential is also plot-

ted in Fig. 3 for comparison. There still remains a slight

difference between the spin-spin potential from first prin-

ciples QCD and the phenomenological one. In this sense,

the reliable spin-dependent potential derived from lattice

QCD can provide new and valuable information to the

NRp models. This improvement of the spin-dependent

potential will help in making accurate theoretical predic-

tions about the higher-mass charmonium states.

To examine the appropriate functional form for the

spin-spin potential, we have tried three types of func-

tional forms:

VS(r) =






α exp(−βr)/r : Yukawa form

α exp(−βr) : Exponential form

α exp(−βr2
) : Gaussian form.

(8)

We then determine which functional form can give a rea-

sonable fit over the range of r/a from 2 to 10. All results

of correlated χ2
fits are summarized in Table III. The

long-range screening observed in the spin-spin potential

is more easily accommodated by the Yukawa form or the

exponential form than the Gaussian form that is often

employed in the NRp models. Although the exponential

form provides the smaller χ2/dof than the Yukawa form,

a solid conclusion requires more accurate information on

the short-range behavior of the spin-spin potential.

In this Letter, we have studied both spin-independent

and -dependent part of the charmonium potential by

means of the BS wave function of 1S charmonium

states in dynamical lattice QCD simulations. The spin-

independent charmonium potential obtained from lattice

QCD with almost physical quark masses is quite simi-

lar to the one used in the NRp models. The spin-spin

potential, which is, for the first time, determined in dy-

namical lattice simulations, properly exhibits the short

range repulsive interaction. Its r-dependence, however, is

slightly different from the phenomenological one adopted

in Ref. [5]. Thus, our results of the charmonium poten-

tial, which are derived from first principles QCD, suggest

that properties of higher-mass charmonium states pre-

dicted in the NRp models may change. We plan to ex-

tend our research to determine all spin-dependent terms

in the charmonium potential, including the tensor and

spin-orbit forces and also to address all the possible sys-

tematic uncertainties described in the text.
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good agreement large difference

NR quark model

Refinement of spin-dependent potentials
→　change the fine structure of charmonia



Comment on two topics

•Revisit of “quark mass”

•Spin-spin potential issue in the 
Wilson loop approach



What does “quark mass” correspond to ?
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Spin-dependent potentials 

Lattice QCD simulations
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Spin-dependent potentials
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Comment on spin-spin potential
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Fig. 12. Spin-spin (tensor) potential V3(r) at β = 6.0 and β = 6.3. The dotted line
is the fit curve Eq. (3.11), applied to the data of β = 6.0.
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Fig. 13. Spin-spin potential V4(r) at β = 6.0 and β = 6.3. The dotted line is the fit
curve Eq. (3.12), applied to the data of β = 6.0.

V3(r) (see Fig. 12) if the ansatz motivated by one-gluon-exchange in Eq. (3.9)
is appropriate. The fit to this function yields the coefficient c = 0.214(2) with
χ2

min/Ndf = 3.7. This value of χ2
min/Ndf is relatively large and the result for c

is 28 % smaller than the Coulombic coefficient in V ′
0(r). A better fit can be

achieved using an ansatz in which the power of 1/r is left as a free parameter,
i.e.

V3;fit(r) =
3c′

rp
. (3.11)

23

Wilson loop approach

Y. Koma and M. Koma, NPB769 (2007) 79

attractive

Vspin(r) ∝ ∇2Vcc̄(r)Our approach

repulsive

V (r) = Vcc̄(r) + SQ · SQ̄Vspin(r)



Wilson-loop approach may spoil δ-type repulsive 
interaction
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is appropriate. The fit to this function yields the coefficient c = 0.214(2) with
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min/Ndf = 3.7. This value of χ2
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is 28 % smaller than the Coulombic coefficient in V ′
0(r). A better fit can be

achieved using an ansatz in which the power of 1/r is left as a free parameter,
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V3;fit(r) =
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23

Vspin(r) ∝ ∇2Vcc̄(r)

∇2

�
1
r

�
= −4πδ(r)

∇2

�
e−αr

r

�
= −4πδ(r) + α2 e−αr

r

origin of repulsive interaction

Vcc̄(r) =
�

− 1
r Coulomb

− e−αr

r Yukawa

∇2Vcc̄ → V ��
cc̄ +

2
r
V �

cc̄ in Wilson-loop approach

Yukawa-type attraction
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Quench approx.mQ →∞

Note: not yet multiplied by a factor of 1/mQ !

becomes very short-ranged toward a “δ-like shape”



Our conjecture

mQ →∞

2.0

1.5

1.0

0.5

0.0

-0.5

-1.0

V
sp
in
-s
pi
n(
r)
 [
fm

]

1.00.80.60.40.20.0

r [fm]

 BS (charm) 
 BS 
 BS (bottom?)
 Wilson loop result 

 



Towards the bottomonium system
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∆Mhyp(S−wave) = 47.3(3) MeV
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full QCD



spin-spin bbbar  potential from full QCD
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Summary
• New method to calculate QQbar potential at finite quark mass
✓ We propose a self-consistent determination of quark mass from 

the BS wave function

✓ We confirm that spin-independent potential is consistent with the 
Wilson loop result in the mQ→∞ limit 

• Application to determine charmonium potential in full QCD
✓ Central potential resembles the NRp model  

✓ Spin-spin potential properly exhibits the short range repulsive 
interaction 

✓ Bottomonium potential (now under way) 

➡Improves interquark potentials from lattice QCD
➡Refines a guideline of “exotic” quarkonia XYZ


