

Yasuro Funaki (Hiyama lab., RIKEN)

素核宇融合による計算基礎物理学の進展 ーミクロとマクロのかけ橋の構築ー @合歓の里,2011年12月3日-5日.

Prediction of cluster states in light nuclei (Ikeda Diagram)

Typical mysterious **0**⁺ states in nuclear structure problem

 O_2^+ state of ¹²C (Hoyle state) indispensable to ¹²C production in stars

Ab initio non-core shell model calculation

First example of α condensate state in finite nuclei

RGM (Full 3a) vs 3a cond. (3a confined in 0S orbit)

A: antisymmetrizer acting on 12 nucleons

$$\begin{aligned} &\langle \phi^3(\alpha) | H - E | \mathcal{A}[\chi(s, r) \phi^3(\alpha)] \rangle = 0 \\ & \text{M. Kamimura, NPA 351, 456 (1981).} \end{aligned} \qquad \qquad \mathcal{A} \end{aligned}$$

	Exp.	RGM
Energy (MeV)	7.65	7.74
αdecay width (eV)	8.7±2.7	7.7
$M(O_2^+ \rightarrow O_1^+)$ (fm ²)	5.4±0.2	6.7
$B(E2: 0_2^+ \rightarrow 2_1^+) (e^2 fm^4)$	13±4	5.6

First example of α condensate state in finite nuclei

RGM (Full 3 a) vs 3 a cond. (3 a confined in 0 S orbit)

The Solution of $3 \alpha RGM$ eq. of motion is almost equivalent to the 3α cond, w.f. The full 3α problem gives the 3α condensate w.f. as its solution!

 \mathcal{A} : antisymmetrizer acting on 12 nucleons

First example of α condensate state in finite nuclei

RGM (Full 3 a) vs 3 a cond. (3 a confined in 0 S orbit)

The Solution of 3α RGM eq. of motion is almost equivalent to the 3α cond. w.f. The full 3α problem gives the 3α condensate w.f. as its solution!

3α clustering also appears starting without assumption of α 's by FMD & AMD

M. Chernykh, T. Neff et al., PRL 94, 032501 (2007).

Y. Kanada-En'yo, PTP 117, 655 (2007).

E

Very nice reproduction by THSR w.f. (BEC)

``BEC'' from Y.F.et al., EPJA 28, 259(2006)

Direct information of alpha condensation for the Hoyle state

T. Yamada and P. Schuck, EPJA 26, 185 (2005).

Analogue to the Hoyle state in ¹⁶0?

Fully solving 4 α -particles relative motions (4 α OCM)

Present: Larger model space $\varphi_{\ell m}(\mathbf{r}, v) = N_{\ell}(v)r^{\ell} \exp(-vr^2)Y_{\ell m}(\mathbf{r})$ Gaussian basis (GEM) E. Hiyama et al. Prog. Part. Phys. 51, 223(2003).

Approximately taken into account

Adopted angular momentum channels: $[[I_1,I_2], I_3] (I_3+I_2+I_1 \leq 8)$ (up to now, ≤ 5) Including $I_3, I_2, I_1 = 4$

Total w.f.

$$\Psi_{\text{OCM}}(J_{k}^{\pi}) = \sum_{\{l\}\{\nu\}} A_{l_{1},l_{2},l_{12},l_{3}}^{(k)}(\nu_{1},\nu_{2},\nu_{3}) \hat{S} \left[\left[\varphi_{\ell_{1}}(\boldsymbol{r}_{1},\nu_{1}), \varphi_{\ell_{2}}(\boldsymbol{r}_{2},\nu_{2}) \right]_{l_{12}}, \varphi_{\ell_{3}}(\boldsymbol{r}_{3},\nu_{3}) \right]_{J}$$

$$A_{l_{1},l_{2},l_{12},l_{3}}^{(k)}(\nu_{1},\nu_{2},\nu_{3}): \text{ Determined by diagonalizing Hamiltonian}$$

Hamiltonian of $4\alpha OCM$

$$H = T + \sum_{i < j} \left[V_{2\alpha}(r_{ij}) + V_{2\alpha}^{Coul}(r_{ij}) \right] + V_{3\alpha} + V_{4\alpha} + V_{Pauli}$$

Pauli forbidden state: h.o,w.f.

2-body force (folding MHN force)

$$V_{2\alpha}(r) = \sum_{n} V_{n}^{(2)} \exp\left(-\beta_{n}^{(2)}r^{2}\right)$$

Coulomb force $V_{2\alpha}^{Coul}(r) = \frac{4e^2}{r} \operatorname{erf}(ar)$

Phenomenological 3-body force (repulsive) $V_{3\alpha} = V^{(3)} \sum_{i < j < k} \exp\left[-\beta(r_{ij}^2 + r_{jk}^2 + r_{ki}^2)\right]$

 $V^{(3)} = 87.5 \text{ MeV}, \quad \beta = 0.15 \text{ fm}^{-2}$ **Phenomenological 4-body force (repulsive)** $V_{4\alpha} = V^{(4)} \exp\left[-\beta(r_{12}^2 + r_{13}^2 + r_{14}^2 + r_{23}^2 + r_{24}^2 + r_{34}^2)\right]$ $V^{(4)} = 12000 \text{ MeV}, \quad \beta = 0.15 \text{ fm}^{-2}$

Energies	from	$4 \alpha th$	reshold

	Cal. (MeV)	Exp. (MeV)		
¹² C(g.s.)	-7.32	-7.28		
$^{12}C(2_{1}^{+})$	-4.88	-2.84		
$^{12}C(4_{1}^{+})$	2.06	6.43		
$^{12}C(0_{2}^{+})$	0.70	0.38		
¹⁶ O(g.s.)	-14.2	-14.44		

 $\left|\left\langle V_{3\alpha}\right\rangle\right|, \left|\left\langle V_{4\alpha}\right\rangle\right| < \frac{7}{100} \left|\left\langle V_{2\alpha}\right\rangle\right|$

0⁺spectra, rms radii, monopole matrix elements

0⁺spectra, rms radii, monopole matrix elements

Large monopole matrix element can be the evidence of cluster states.

T. Yamada, Y. F. et al., PTP120, 1139 (2008).

		Experimental data		4α OCM			
	E _x [MeV]	R [fm]	M(E0) [fm²]	Г [MeV]	R [fm]	M(E0) [fm²]	Г [MeV]
0 + ₁	0.00	2.71			2.7		
0 ⁺ ₂	6.05		3.55		3.0	3.9	
0 + ₃	12.1		4.03		3.1	2.4	
0 ⁺ ₄	13.6		no data	0.6	4.0	2.4	0.60
0 ⁺ ₅	14.0		3.3	0.185	3.1	2.6	0.20
0 ⁺ ₆	15.1		no data	0.166	5.6	1.0	0.14
over 15% of total EWSR				20% of total I	EWSR		

Y.F. S. Ohkubo et al., in preparation.

Hoyle + alpha, 2-body scattering solutions.

Momentum inertia is reduced. Signature of superfluidity ??

S. Ohkubo and Y. Hirabayashi, PLB 684, 127 (2010).

Summary

Investigation of loosely bound alpha gas states in heavier nuclei than ¹²C.

- More α particle condensate states very likely to exist. Analogue state in ¹⁶0 to the Hoyle state (found with 4α0CM calc.) as the sixth 0+ state Assigned to 15.2 MeV state? More experimental information is needed.
- Hoyle analogs for non-zero spin states are promising. likely Hoyle + alpha rotational band sign of condensate

Problem is continuum mixing

On going issue: beyond bound state approximation

4-alpha CSM (Complex Scaling Method) with T2K-TsuKuba (up to 512cpu's)

to my Collaborators Taiichi Yamada (Kanto Gakuin Univ.) Hisashi Horiuchi (RCNP) Akihiro Tohsaki (RCNP) Peter Schuck (IPN, Orsay) Gerd Röpke (Rostock Univ.) Masaaki Takashina (RCNP) Tomotsugu Wakasa (Kyushu Univ.) Wolfram von Oertzen (HMI, Berlin) Shigeo Ohkubo (Kochi women Univ.) and for your attention.