各反応熱フィードバックを考慮した 超新星爆発モデル

- SN explosion model incl. nuclear reaction energy

中村 航 (Nakamura, Ko)

National Astronomical Observatory of Japan

Collaborators: T. Takiwaki, K. Kotake (NAOJ) N. Nishimura (Univ. of Basel/GSI)

新領域-HPCI研究会 @ 合歓の郷 December 3-5, 2011

Outline

- Core-collapse supernova explosion
 - collapse, bounce, and stalled
- Neutrino-driven explosion model
 - neutrino heating (and cooling)
 - Standing Accretion-Shock Instability (SASI)
- Shock revival and enhancement of expl. energy by nuclear reactions
 - 2-D simulations for 15.0 Msun model
 - using ZEUS-MP code incl. nuclear reaction network
- Summary

Neutrino-driven SN explosion mechanism

- Gravitational binding energy of the collapsing core (>~10⁵³ erg) >> Typical SN explosion energy (~10⁵¹ erg)
- Neutrinos carry away most of the energy, but ..
- A small fraction of emitted neutrinos can interact with the matter behind a shock, deposit energy, and revive the stalled shock wave.
- Hydrodynamic instabilities
 enhance the neutrino heating.

Progenitor	Group (Year)	Mechanism	Dim. (Hydro)	t _{exp} (ms)	$\frac{E_{\exp}(\mathbf{B})}{@t_{\mathrm{pb}}(\mathrm{ms})}$	v transport (Dim, $O(v/c)$)	
11.2 <i>M</i> _☉	MPA[76] (2006)	v-driven	2D (PN)	~100	~ 0.005 (~220)	"RBR" Boltz- mann, 2, <i>O</i> (<i>v</i> / <i>c</i>)	
(WHW02[72])	Princeton+ [77] (2007)	Acoustic	2D (N)	≳1100	~0.1* (1000)	MGFLD 1, (N)	
	NAOJ+ [78](2011)	v-driven	3D (N)	~100	0.01 (300)	IDSA 1, (N)	
12 <i>M</i> _☉ (WHW02[72])	Oak Ridge+ [79](2009)	v-driven	2D (PN)	~300	0.3 (1000)	"RBR" MGFLD 1, <i>O</i> (<i>v</i> / <i>c</i>)	
13 <i>M</i> _☉ (WHW02[72])	Princeton+ [77](2007)	Acoustic	2D (N)	≳1100	~0.3* (1400)	MGFLD 1, (N)	
(NH88[71])	NAOJ+ [80](2010)	v-driven	2D (N)	~200	0.1 (500)	IDSA 1, (N)	
15 <i>M</i> _☉ (WW95[73])	MPA[81] (2009)	<i>v</i> -driven	2D (PN)	~600	0.025 (~700)	Boltzmann $2,O(v/c)$	
(WHW02[72])	Princeton+ [77] (E	exp < 1 E	Bethe =	10 ⁵¹ e	rgs)	MGFLD 1, (N)	1
	OakRidge+ [79](2009)	v-driven	2D (PN)	~300	~ 0.3 (600)	"RBR" MGFLD 1, <i>O</i> (<i>v</i> / <i>c</i>)	
20 <i>M</i> _☉ (WHW02[72])	Princeton+ [77](2007)	Acoustic	2D (N)	≳1200	~0.7* (1400)	MGFLD 1, (N)	
25 <i>M</i> _☉ (WHW02[72])	Princeton+ [77](2007)	Acoustic	2D (N)	≳1200	- (-)	MGFLD 1, (N)	
	Oak Ridge+ [79](2009)	v-driven	2D (PN)	~300	~ 0.7 (1200)	"RBR" MGFLD 1, <i>O</i> (<i>v</i> / <i>c</i>)	

List of recent neutrino-radiation hydrodynamic simulations. (Table 1 of Kotake 2011 arXiv: 1110.5107)

Numerical scheme

Basic equations (Murphy & Burrows '08)

$$\frac{d\rho}{dt} + \rho \nabla \cdot \boldsymbol{v} = \boldsymbol{0},$$

$$p \frac{d\boldsymbol{v}}{dt} = -\nabla p - \rho \nabla \Phi$$

$$\frac{\partial e}{\partial t} + \nabla \cdot \left[(e+p)\mathbf{v} \right] = -p\mathbf{v} \cdot \nabla \Phi + \rho (H - C + \mathbf{Q})$$

 $\Phi = -\frac{GM_{\rm in}}{M_{\rm in}},$

 $\frac{dY_{\rm e}}{dt} = Y_{\rm e} \text{ prescription / } \Gamma_{\rm e}$

$$Lv_{\rm e} = L\bar{v}_{\rm e} = \frac{L_0}{\rho} \exp(-t_{\rm pb}/t_{\rm d})$$

$$C = 1.399e20 \times (T / 2MeV)^{6}$$

× (Yn + Ye) $e^{-\tau}$ [erg/g/s]

Q : Nuclear reaction energy ←Network calculation incl. He-Ni

SASI

Ω

Progenitor model

 $v_r(r,\theta) = v_r^0(r,\theta) + \delta v_r$ $\delta v_r = 0.01 \times rand \times v_r^0(r,\theta)$

derived from evolutionary calculation for a star with M=15 Msun, Z=Zsun (Limongi & Chieffi '06)

Neutrino+SASI+nuclear-burning model

Snap shots of entropy distributions from our simulations with (*left*) and without (*right*) nuclear network calculation.

Example) $Lv_e = L_0 \exp(-t_{pb}/t_d) \leftarrow L_0 = 2.4 \times 10^{52} \text{ erg/s}, t_d = 1.1 \text{ s}$

Time after core bounce:

Neutrino+SASI+nuclear-burning model

- -15Msun model
- -2-dimensional axi-symmetric coordinates
- $-300(r)*128(\theta)$ covering r = 0-5000km & $\theta = 0-\pi$

-ZEUS-MP code equipped with nucl. network

With/w.o. nucl. burning

- Si & O burning
- "nuclear reaction-aided" supernova explosion
- corresponding parameter region is narrow, but ..

Contribution of nuclear reactions to explosion energy

- Explosion energy
 - red: explosion energy = $\Sigma(\text{Ekin} + \text{Eint} + \text{Egrv})_i$ for $vr_i \& \text{Etot}_i > 0$
 - green: net burning energy
 - blue-dotted: explosion energy in the case without nuclear burning

Summary

- Neutrino-driven model is one of the possible solution for Corecollapse SN explosion mechanism.
- However, it's less powerful to reproduce the typical SN explosion energy of 10⁵¹ erg (even with the aid of hydro. instabilities or acoustic oscillation).
- We have demonstrated the 2-D simulations taking account of the effects of nuclear reactions on hydr.
 - nuclear network including 13 alpha-nuclei from He to Ni.
- We found that:
 - explosion is available even if Lv is low and/or t_d is short,
 - explosion energy is enhanced by the energy released via nuclear reactions,
 - and we could reproduce the typical SN explosion energy.