

有限密度格子QCDの研究 -高密度への挑戦-

K. Nagata, Hiroshima Univ., RIISE S. Motoki (KEK), A. Nakamura (Hiroshima) in XQCD-J collaboration

Talk given at Nemu no Sato, Shima, Mie, 2011/12/04

(a)

Contents

- Introduction
- Reduction formula for Wilson fermion determinant
- Application of reduction formula
 - 1. Taylor expansion
 - 2. Lee-Yang zeros

Imaginary chemical potential

QCD at finite temperature and density

- nature of matter in our universe
 - ordinary : hadron, nuclei, nuclear matter
 - dense : compact stars
 - hot : HIC, creation of matter in early universe
- QCD is non-perturbative.
- Finite density LQCD : sign problem

To reach at low T & high mu

- Several methods.
 - Most studies have been done for regions near Tc.
 - Each method has its own difficulty
 - Taylor : truncation error
 - MPR : overlap & sign problems
 - Imaginary : uncertainty of functional form
 - etc.....
- We have been studied those methods,
 - Wilson fermion, formula for determinant, real & imaginary

Fermion determinant

- $Z(\mu) = \int \mathcal{D}U(\det \Delta(\mu))^{N_f} e^{-S_G}$
- effects of chemical potential
- sign problem
- numerical hot spot

A formula for determinant χ $Z(\mu) = \int \mathcal{D}U(\det \Delta(\mu))^{N_f} e^{-S_G}$

- Quark action as t-t matrix
 - temporal hop accompanies chemical potential
 - spatial (diag), temporal (n.n + b.c)
- Performing temporal determinant by hand
 - rank reduces to N/Nt (memory & CPU time ~1/Nt^2)
 - det D is an analytic function of mu.
- Reduction formula enables us
 - exact evaluation of determinant (useful for large mu)
 - for arbitrary values of chemical potential
 - -_____suppress CPU time for low T (T=1/a Nt)

Reduction formula

$\det \Delta(\mu) = C_0 e^{(N_r/2)\mu/T} \det(Q + e^{-\mu/T})$

- Q : rank = Nr = 4 Nc Ns^3 matrix (Nr = N/Nt)
 - function of link variables
 - independent of chemical potential

Wilson type : KN&AN, PRD82,094027 ('10),

$$\det \Delta(\mu) = C_0 e^{(N_r/2)\mu/T} \prod_{n=1}^{N_r} (\lambda_n + e^{-\mu/T})$$

• It can be used for many applications

Taylor expansion

$$\frac{p(\mu, T)}{T^4} = c_0 + c_2(\mu/T)^2 + c_4(\mu/T)^4 + \cdots$$

• Coefficients are calculated at mu=0, and functions of T.

$$c_n(T) = \frac{1}{n!} T^n \frac{\partial^n}{\partial \mu^n} \frac{p(\mu = 0)}{T^4}$$

Taylor coefficients

Data of "WHOT" are taken from WHOT, Ejiri et al., PR**D82**, 014508 (2010), arXiv:0909.2121

clover-Wilson + RG-gauge(Nf=2) Volume : 8^3x4 quark mass : mps/mV ~ 0.8 Configurations : HMC at mu=0 11 K steps including (therm. as 3-5K) Eigen values : 400 configs.

Taylor coefficients

- At high T, almost converge up to O((mu/T)^4).
- Near and below Tc, slow convergence. Higher order terms are non-negligible.

We are preparing for higher order coefficients and those at low T

EoS & Phase boundary

Phase boundary can be obtained from convergence radius (in principle)

$$r(T) = \lim_{n \to \infty} \left| \frac{C_n}{C_{n+2}} \right|$$

Lee-Yang zeros

Zeros of partition function (Lee-Yang) implies phase transtions

 $Z(\xi) \to 0$ $F = -T \ln Z(\xi) \qquad \qquad \frac{\partial}{\partial \mu} F = -T \frac{1}{Z} \frac{\partial Z}{\partial \mu}$ $\xi = \exp(-\mu/T)$

- LY zeros are distributed on the complex fugacity plane.
- LY zeros approach to Re[xi] AXIS as V -> 0.

Lee-Yang zeros

 $Z(\xi) = \left\langle \frac{\det^2 \Delta(\mu)}{\det^2 \Delta(0)} \right\rangle_0$ F = 0

Re[xi]

In Z

Im[xi]

 $\xi = \exp(-\mu/T)$

 $F = -T \ln Z(\xi)$

Preliminary data : config : clover-Wilson Measurement : w/o clover-term statistics 100

Lee-Yang zeros

quark : inside unit circle anti-quark : outside unit circle

Imaginary chemical potential

$$Z(\mu) = \int \mathcal{D}U(\det \Delta(\mu))^{N_f} e^{-S_G}$$

- Sign problem is absent for pure imag. mu

 Generating configs. at imaginary mu
 - approach to real mu
 - analytic continuation
 - canonical approach

Imaginary chemical potential

- MC simulations in mu²<0 region and analytic continuation
- This approach may be useful for the study of low-T region.

For properties of this phase diagram e.g. KN&AN, PRD83,114507 , arXiv:1104.2142.

wide regionsRW periodicity

Polyakov loop at low T

We found the effect of chemical potential at T/Tc=0.5.

Fit & analytic continuation

RW periodicity -> Fourier series (cos) -> cosh

55-

Consistency

• Each approach has its own difficulty, consistency check is helpful

 $Z(\mu) = \int \mathcal{D}U(\det \Delta(\mu))^{N_f} e^{-S_G}$

- Taylor : truncation error
- MPR : overlap & sign problems
- Imaginary : uncertainty of functional form
- They would be consistent if calculations are done
 in enough precision.

Consistency

Taylor and MPR are consistent — consistent up to mu/T = 0.6

- Taylor : truncation error

- MPR : overlap & sign problem

Summary

- We are studying several ideas towards low T & high mu
 - Taylor, Lee-Yang, Imaginary etc
 - phase boundary, EoS ...

 Further investigations are in progress

 – larger volume, increasing statistics , low T (T=0.5Tc-Tc)

