Lattice QCD studies of strangeness
S = -2 baryon-baryon interactions

Kenji Sasaki (University of Tsukuba)
for HAL QCD collaboration

HAL (Hadrons to Atomic nuclei from Lattice) QCD Collaboration

S. Aoki T. Doi T. Hatsuda Y. Ikeda
(Univ. of Tsukuba) (Univ. of Tokyo) (RIKEN) (Tokyo Inst. Tech.)
T. Inoue N. Ishii K. Murano H. Nemura
(Nihon Univ.) (Univ. of Tsukuba) (RIKEN) (Tohoku Univ.)
Introduction

Strangeness in nuclei opened the new frontier of nuclear physics.

Experimental side

Exploration of the multi-strangeness hadronic systems is planned at J-PARC
- Generalized BB interaction
- Hypernuclear structure
- Search of exotic hadrons
- and so on

Theoretical side

Study the hyperon-nucleon (YN) and hyperon-hyperon (YY) interactions

One of the most important subject in the (hyper-) nuclear physics

The phenomenological description of them has large uncertainties due to the shortage of experimental data.

Lattice QCD simulation can produce BB potential directly from QCD complementary to an experiment.
Introduction

This work:

Baryon-baryon interactions in strangeness S = -2 system

- The first step towards the multi-strangeness world.
- Structures of double-Λ hypernuclei and Ξ-hypernuclei
- The SU(3) breaking effects in the BB interaction.
- “H-dibaryon“ at physical point.

Information of ΛΛ interaction and H-dibaryon from experiment

Conclusions of the “NAGARA Event” (The double- hypernuclear event)

Lower limit of “H“ mass: \(m_H \geq 2m_\Lambda - 6.9 \text{MeV} \).

The \(\Lambda-\Lambda \) interaction is weakly attractive.

K. Nakazawa and KEK-E176 & E373 collaborators

Kenji Sasaki (University of Tsukuba) for HAL QCD collaboration
SU(3) Classification of B-B states

Within **S-wave** total anti-symmetric states are constructed by combination of spin and flavor.

\[8 \times 8 = 1 + 8_S + 27 + 8_A + 10 + 10^* \]

- **Flavor symmetric**
 - Spin singlet

- **Flavor anti-symmetric**
 - Spin triplet

Hyper-charge (Strangeness)

- \(Y=2(S=0) \)
- \(Y=1(S=-1) \)
- \(Y=0(S=-2) \)

Isospin \((I_z)\)

There are 10 flavor combinations:

\[\Lambda\Lambda, p\Xi^-, n\Xi^0, \Xi^-p, \Xi^0n, \Sigma^+\Sigma^-, \Sigma^0\Sigma^0, \Sigma^-\Sigma^+, \Lambda\Sigma^0, \Sigma^0\Lambda \]

Kenji Sasaki (University of Tsukuba) for HAL QCD collaboration
Classification of B-B states with $S=-2$

Flavor-Symmetric: spin singlet

Flavor-Anti-symmetric: spin triplet

I=0 states

I=1 states

I=2 state

S=-2 BB states

Kenji Sasaki (University of Tsukuba) for HAL QCD collaboration
Classification of B-B states with \(S = -2 \)

Flavor-Symmetric: spin singlet

1. SU(3) IR

27

8s

Flavor-Anti-symmetric: spin triplet

10

10*

8a

I=0 states

1, 8s, 27 mixing

I=1 states

8s, 27 mixing

\(\Sigma\Sigma \)

\(\Lambda\Sigma \)

\(\Xi\Xi \)

\(\Lambda\Lambda \)

SU(3) breaking

Kenji Sasaki (University of Tsukuba) for HAL QCD collaboration
We have to extend our method to the **coupled channel formalism**.
HAL QCD strategy

- Calculate Bethe-Salpeter (BS) wave function on any gauge configuration.
 \[\Psi (t-t_0, \vec{x}) = \sum \langle 0|B(t, \vec{x}+\vec{y})B(t, \vec{x})|BB(t_0) \rangle \]

- Define the non-relativistic Schrödinger equation (general form)
 \[\left(E - \frac{\nabla^2}{2\mu} \right) \Psi (\vec{x}) = \int U(\vec{x} - \vec{y})\Psi (\vec{y})d^3y \]

- Performing the derivative expansion for the interaction kernel
 \[U(\vec{x} - \vec{y}) \approx V_0(\vec{x})\delta(\vec{x} - \vec{y}) + V_1(\vec{x}, \nabla)\delta(\vec{x} - \vec{y}) \cdots \]

- The potential is given as
 \[V(\vec{x}) = E - \frac{1}{2\mu} \frac{\nabla^2 \Psi (\vec{x})}{\Psi (\vec{x})} \]

- This technique is widely applicable for hadronic systems

Extension to the YN and YY systems

Kenji Sasaki (University of Tsukuba) for HAL QCD collaboration
Coupled channel Schrödinger equation

Using four-point correlator \(W \) with an optimized source such as,

\[
W_\alpha(\vec{x}, E) = A \Psi_\alpha(\vec{x}, E) e^{-Et}
\]

The coupled channel Schrödinger equation can be rewritten as

\[
\begin{pmatrix}
\frac{p_\alpha^2}{2\mu_\alpha} - H_0^\alpha \\
\end{pmatrix}
W_\alpha(\vec{x}, E) = V_{\alpha\alpha}(\vec{x}) W_\alpha(\vec{x}, E) + V_{\alpha\beta}(\vec{x}) W_\beta(\vec{x}, E) + V_{\alpha\gamma}(\vec{x}) W_\gamma(\vec{x}, E)
\]

Define

\[
R_\alpha(\vec{x}, E) \equiv \frac{W_\alpha(\vec{x}, E)}{C_\alpha(t)} \propto \exp\left(-(E - M_\alpha)t\right) \approx \exp\left(-\frac{p_\alpha^2}{2\mu_\alpha}t\right)
\]

Taking time derivative of \(R \),

\[
\partial_t R_\alpha(\vec{x}, E) = -\frac{p_\alpha^2}{2\mu_\alpha} R_\alpha(\vec{x}, E)
\]

Thus the potential matrix can be obtained as

\[
\begin{pmatrix}
V_{\Lambda\Lambda}(\vec{x}) \\
V_{\Lambda\Xi}(\vec{x}) \\
V_{\Lambda\Sigma}(\vec{x})
\end{pmatrix} =
\begin{pmatrix}
W_{\Lambda\Lambda}(\vec{x}, E_0) & W_{\Lambda\Xi}(\vec{x}, E_0) & W_{\Lambda\Sigma}(\vec{x}, E_0) \\
W_{\Lambda\Lambda}(\vec{x}, E_1) & W_{\Lambda\Xi}(\vec{x}, E_1) & W_{\Lambda\Sigma}(\vec{x}, E_1) \\
W_{\Lambda\Lambda}(\vec{x}, E_2) & W_{\Lambda\Xi}(\vec{x}, E_2) & W_{\Lambda\Sigma}(\vec{x}, E_2)
\end{pmatrix}^{-1}
= \begin{pmatrix}
-C_{\Lambda\Lambda} \partial R_{\Lambda\Lambda}(\vec{x}, E_0) - H_0^\alpha W_{\Lambda\Lambda}(\vec{x}, E_0) \\
-C_{\Lambda\Lambda} \partial R_{\Lambda\Lambda}(\vec{x}, E_1) - H_0^\alpha W_{\Lambda\Lambda}(\vec{x}, E_1) \\
-C_{\Lambda\Lambda} \partial R_{\Lambda\Lambda}(\vec{x}, E_2) - H_0^\alpha W_{\Lambda\Lambda}(\vec{x}, E_2)
\end{pmatrix}
\]
Numerical setup

- **2+1 flavor** gauge configurations by CP-PACS/JLQCD collaboration.
 - RG improved gauge action & $O(a)$ improved clover quark action
 - $\beta = 1.83$, $a^{-1} = 1.632$ [GeV], $a = 0.1209$ [fm]
 - $16^3 \times 32$ lattice, $L = 1.934$ [fm].
 - $\kappa_{ud} = 0.13825$, $\kappa_s = 0.13710$ was chosen (named Set3).
 - 800 / 800 configurations are used.

- Flat wall source is considered to produce S-wave B-B state.
 - 16 shifted sources every 2 time-slices are considered to enhance the S/N ratio.

- The USQCD computer resources are used.
 - We acknowledge the USQCD for providing of computer resources.

<table>
<thead>
<tr>
<th></th>
<th>π</th>
<th>K</th>
<th>m_π/m_K</th>
<th>N</th>
<th>Λ</th>
<th>Σ</th>
<th>Ξ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set3</td>
<td>661±1</td>
<td>768±1</td>
<td>0.860</td>
<td>1482±3</td>
<td>1557±3</td>
<td>1576±3</td>
<td>1640±3</td>
</tr>
</tbody>
</table>

In unit of MeV
Isospin combinations of BB operator

\[\Lambda \Lambda, \ p\Xi^-, \ n\Xi^0, \ \Xi^- p, \ \Xi^0 n, \ \Sigma^+\Sigma^-, \ \Sigma^0\Sigma^0, \ \Sigma^-\Sigma^+, \ \Lambda \Sigma^0, \ \Sigma^0\Lambda \]

I=0 operators

\[N\Xi = +\sqrt{\frac{1}{2}}\ p\Xi^- - \sqrt{\frac{1}{2}}\ n\Xi^0 \]

\[\Sigma\Sigma = +\sqrt{\frac{1}{3}}\ \Sigma^+\Sigma^- - \sqrt{\frac{1}{3}}\ \Sigma^0\Sigma^0 + \sqrt{\frac{1}{3}}\ \Sigma^-\Sigma^+ \]

Flavor symmetric

I=1 operators

\[N\Xi = +\sqrt{\frac{1}{2}}\ p\Xi^- + \sqrt{\frac{1}{2}}\ n\Xi^0 \]

\[\Sigma\Sigma = +\sqrt{\frac{1}{2}}\ \Sigma^+\Sigma^- - \sqrt{\frac{1}{2}}\ \Sigma^-\Sigma^+ \]

\[\Lambda\Sigma \]

Flavor anti-symmetric

I=2 operators

\[\Sigma\Sigma = +\sqrt{\frac{1}{6}}\ \Sigma^+\Sigma^- + \sqrt{\frac{4}{6}}\ \Sigma^0\Sigma^0 + \sqrt{\frac{1}{6}}\ \Sigma^-\Sigma^+ \]
Lists of channels

I=0 states

<table>
<thead>
<tr>
<th>Spin</th>
<th>BB channels</th>
<th>SU(3) representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1S_0</td>
<td>$\Lambda\Lambda$ $N\Xi$ $\Sigma\Sigma$</td>
<td>1 8s 27</td>
</tr>
<tr>
<td>3S_1</td>
<td>$-$ $N\Xi$ $-$</td>
<td>8a $-$ $-$</td>
</tr>
</tbody>
</table>

I=1 states

Attraction

<table>
<thead>
<tr>
<th>Spin</th>
<th>BB channels</th>
<th>SU(3) representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1S_0</td>
<td>$N\Xi$ $-$ $\Lambda\Sigma$</td>
<td>$-$ $8s$ 27</td>
</tr>
<tr>
<td>3S_1</td>
<td>$N\Xi$ $\Sigma\Sigma$ $\Lambda\Sigma$</td>
<td>8a 10 10*</td>
</tr>
</tbody>
</table>

Strong attraction (H-dibaryon)

I=2 states

<table>
<thead>
<tr>
<th>Spin</th>
<th>BB channels</th>
<th>SU(3) representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1S_0</td>
<td>$\Sigma\Sigma$</td>
<td>$-$ $-$ 27</td>
</tr>
<tr>
<td>3S_1</td>
<td>$-$</td>
<td>$-$</td>
</tr>
</tbody>
</table>

Strong repulsion

Similar to The NN potential

Repulsion

Kenji Sasaki (University of Tsukuba) for HAL QCD collaboration
Strong flavor dependence turns out with irreducible rep. Various interaction are seen by extending to SU(3).
\[\Sigma \Sigma (l=2) \, ^1S_0 \text{ channel} \]

Direct correspondence to the 27plet in SU(3) irreducible representation

Similar behavior to the NN potential

Short range repulsion and mid-range attraction

\[\widehat{N} \Xi (l=0) \, ^3S_1 \text{ channel} \]

Direct correspondence to 8 plet.

Repulsive core is not so high

More attractive than 27 plet potential
\(\Lambda \Xi, \Lambda \Sigma (l=1) \, ^1S_0 \) channel

Set 3 : \(m = 661 \)

8s-27 mixing channel.

Origin of strong repulsion

No attractive pocket in diagonal elements
Kenji Sasaki (University of Tsukuba) for HAL QCD collaboration
In this channel, our group found the “H-dibaryon” in the SU(3) limit.

Kenji Sasaki (University of Tsukuba) for HAL QCD collaboration
Lists of channels

Spin dependence of potential

<table>
<thead>
<tr>
<th>Spin</th>
<th>BB channels</th>
<th>SU(3) representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1S_0</td>
<td>$\Lambda\Lambda$</td>
<td>1, 8s, 27</td>
</tr>
<tr>
<td>3S_1</td>
<td>--</td>
<td>8a, --, --</td>
</tr>
</tbody>
</table>

Isospin dependence of potential

<table>
<thead>
<tr>
<th>Spin</th>
<th>BB channels</th>
<th>SU(3) representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1S_0</td>
<td>$N\Xi$</td>
<td>--, 8s, 27</td>
</tr>
<tr>
<td>3S_1</td>
<td>$N\Xi$, $\Sigma\Sigma$, $\Lambda\Sigma$</td>
<td>8a, 10, 10*</td>
</tr>
</tbody>
</table>

I=0 operators

<table>
<thead>
<tr>
<th>Spin</th>
<th>BB channels</th>
<th>SU(3) representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1S_0</td>
<td>$\Xi\Xi$</td>
<td>27</td>
</tr>
</tbody>
</table>

I=2 operators

<table>
<thead>
<tr>
<th>Spin</th>
<th>BB channels</th>
<th>SU(3) representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1S_0</td>
<td>$\Sigma\Sigma$</td>
<td>--, --, 27</td>
</tr>
</tbody>
</table>

Kenji Sasaki (University of Tsukuba) for HAL QCD collaboration
Spin dependence of $N\Xi$, $\Lambda\Sigma$ potentials

Set 3: $m_\pi = 661$

Spin triplet potentials are more attractive than the spin singlet potentials.

The tensor potential is not separated yet in spin triplet channel.

Kenji Sasaki (University of Tsukuba) for HAL QCD collaboration
Isospin dependence of $N\Xi, \Sigma\Sigma$ potentials

In $N\Xi$ potentials the $I=0$ potentials are more attractive than the $I=1$ potentials.

The short range behavior of potentials are strongly depend on the choice of state.
We have investigated the S=-2 BB interactions from lattice QCD. They are complement to experiments.

In order to deal with a variety of interactions, we extend our method to the coupled channel formalism.

Asymptotic momentum can be determined from time derivative of R-correlator.

The source optimization is not necessary in our formalism by employing the time derivative treatment of the energy part.

We have found the strong state dependence of ΝΞ potential especially at the short range region.

Realistic potentials with lighter quark masses and large volume

Towards the physical point!

Look for the physical “H-dibaryon”.

Coupled channel technique is powerful and widely applicable

We will tackle to reveal all baryon-baryon interactions with S=0, -1, … -6 below the pion production threshold.

By the world's fastest “K computer”