Topological susceptibility and axial symmetry at finite temperature

Guido Cossu, KEK 高エネルギー加速器研究機構

> Nemunosato Hotel – Kashikojima December 4th 2011

Summary:

- Motivation
- Chiral phase transition at finite temperature and axial symmetry
- Previous studies
- Simulating dynamical overlap fermions
- Topology fixing and friends
- \checkmark Methodology and results (quenched and N_f=2)
- Discussion and conclusions

People involved in the project

JLQCD group: S. Hashimoto, S. Aoki, T. Kaneko, H. Matsufuru,

J. Noaki, E. Shintani

See for example POS(Lattice2010)174 (arXiv::1011.0257), article in prep.

Motivation

Pattern of chiral symmetry breaking at low temperature QCD $SU(N_f)_V \times SU(N_f)_A \times U(1)_V \times U(1)_A \rightarrow SU(N_f)_V \times U(1)_V$ Well known facts

- Axial anomaly Non vanishing topological susceptibility
- Mass splitting of the η ' with respect to the lighter mesons

What is the fate of the axial $U_A(1)$ symmetry at finite temperature($T \ge T_c$)?

Dirac Overlap operator, retaining the maximal amount of chiral symmetry on the lattice is, theoretically, the best way to answer this question.

Goal of the current project

Check restoration of axial $U_A(1)$ symmetry by measuring (spatial) meson correlators at finite temperature in full QCD with overlap

Degeneracy of correlators is the signal that we are looking for

$$\sigma(1_{4} \otimes 1_{2}) \stackrel{\text{Chiral sym.}}{\longrightarrow} \pi(i\gamma_{5} \otimes \tau^{a})$$

$$U(1)_{A} \stackrel{\text{U}(1)_{A}}{\longrightarrow} \eta(i\gamma_{5} \otimes 1_{2}) \stackrel{\text{Chiral sym.}}{\longrightarrow} \delta(1_{4} \otimes \tau^{a})$$

As I will show in this talk,

there are some issues to solve before attacking the real problem...

Simulating dynamical overlap fermions

In order to avoid expensive tricks to handle the zero modes of the Hermitian Wilson operator JLQCD simulations use (JLQCD 2006):

- Iwasaki action (suppresses Wilson operator near zero modes)
- Extra Wilson fermions and twisted mass ghosts to rule out the zero modes

Topology is thus fixed throughout the HMC trajectory.

The effect of fixing topology is expected to be a Finite Size Effect (actually O(1/V))

$$Z_Q = \frac{1}{\sqrt{2\pi\chi_t V}} \exp\left[-\frac{Q^2}{2\chi_t V}\right] \left[1 - \frac{c_4}{8V\chi_t^2} + O\left(\frac{1}{V^2}, \delta^2\right)\right].$$

Fixing topology: how to deal with it at T=0

From the previous partition function we can extract the relation between correlators at fixed θ and correlators at fixed Q

In particular for the topological susceptibility and using the Axial Ward Identity we obtain a relation involving fermionic quantities:

$$\lim_{|x| \to \text{large}} \langle mP(x)mP(0) \rangle_Q^{\text{disc}} \equiv \frac{1}{V} \left(\frac{Q^2}{V} - \chi_t - \frac{c_4}{2\chi_t V} \right) + O(e^{-m_\pi |x|})$$

P(x) is the flavor singlet pseudo scalar density operator Aoki *et al.* PRD76,054508 (2007)

What is the effect of fixing Q at finite temperature?

Results

- Simulation details
- Eigenvalues distribution

- Finite temperature quenched SU(3) at fixed topology
- Meson correlators in two flavors QCD

BG/L

BG/Q(?)

Simulation details

Pure gauge (16³x6, 24³x6): Iwasaki action + top. fixing term

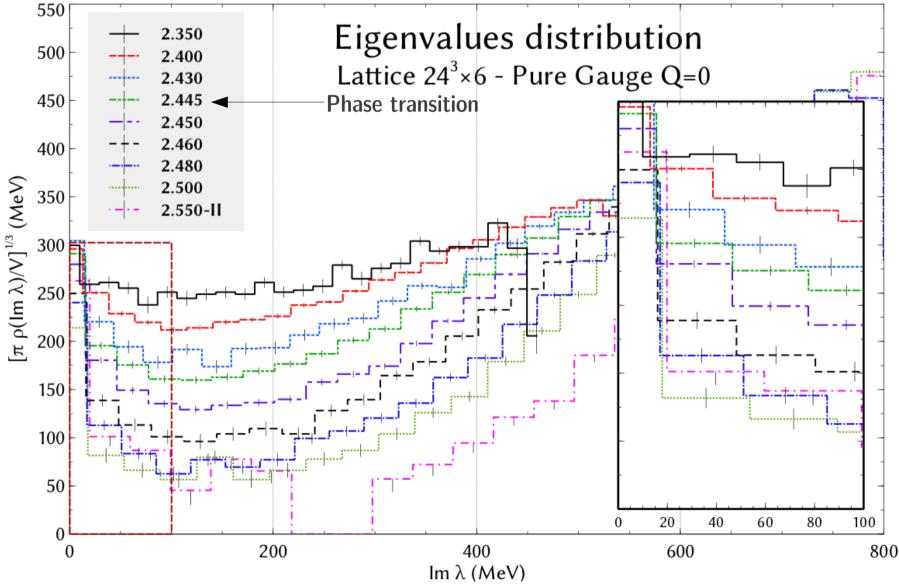
β	a(fm)	T (MeV)	T/Tc
2.35	0.132	249.1	0.86
2.40	0.123	268.1	0.93
2.43	0.117	280.9	0.97
2.44	0.115	285.7	0.992
2.445	0.114	288	1.0
2.45	0.1133	290.2	1.01
2.46	0.111	295.1	1.02
2.48	0.107	305.6	1.06
2.50	0.104	316.2	1.10
2.55	0.094	347.6	1.20

Two flavors QCD $(16^3 \times 8)$ Iwasaki + Overlap + top. Fix O(200) trj per T am=0.05, 0.025, 0.01

β	a(fm)	T (MeV)	T/Tc
2.18	0.1438	171.5	0.95
2.20	0.1391	177.3	0.985
2.30	0.1183	208.5	1.15
2.40	0.1013	243.5	1.35
2.45	0.0940	262.4	1.45

9

Eigenvalue distribution



Topological susceptibility in pure gauge theory - I

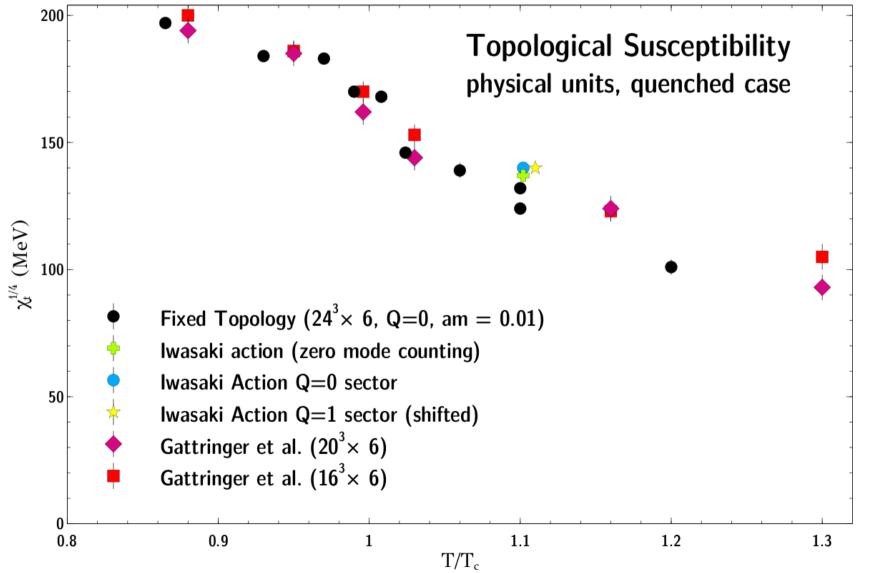
$$\lim_{|x| \to \text{large}} \langle mP(x)mP(0) \rangle_Q^{\text{disc}} \equiv \frac{1}{V} \left(\frac{Q^2}{V} - \chi_t - \frac{c_4}{2\chi_t V} \right) + O(e^{-m_\pi |x|})$$

(Spatial) Correlators are always approximated by the first 50 eigenvalues (enough to extract the $x \rightarrow \infty$ limit)

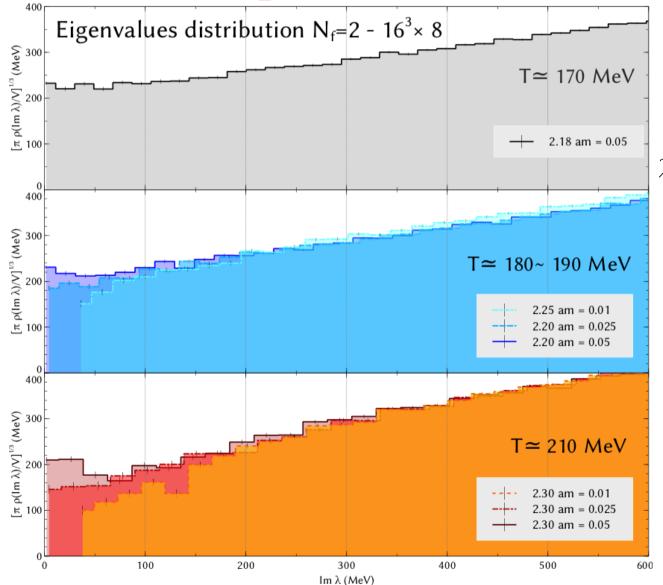
- •Pure gauge: double pole formula for disconnected diagram
- Topological susceptibility estimated by a joint fit of connected and disconnected contribution.

11

Topological susceptibility in pure gauge theory - II



Full QCD – Eigenvalues



Effect of axial symmetry on the Dirac sperctrum

$$\chi^{\pi-\delta} = \int d\lambda \rho_m(\lambda) \frac{4m^2}{\lambda^2 + m^2}$$

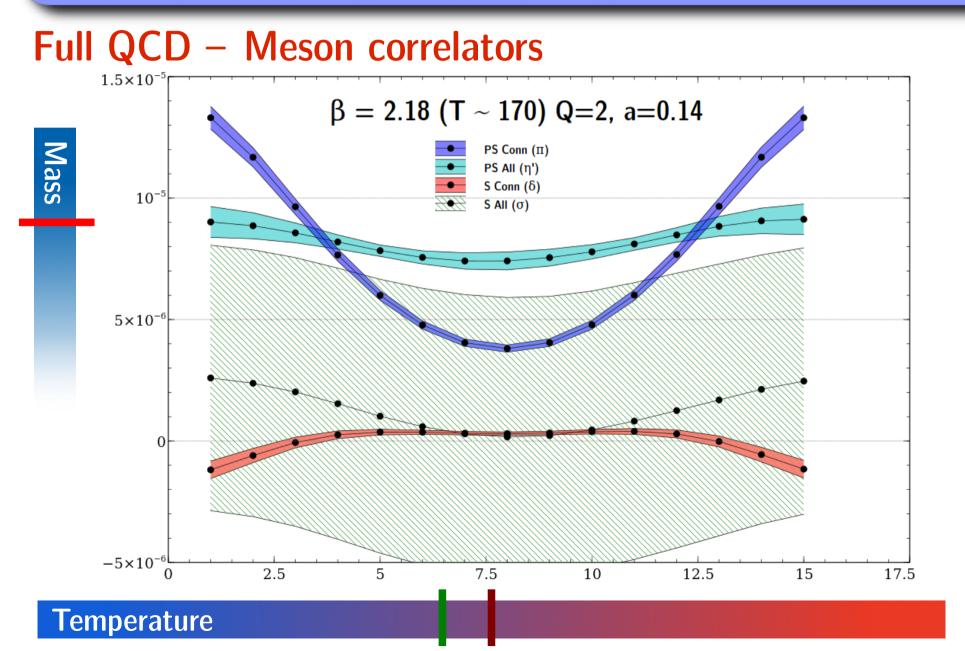
If chiral symmetry is restored we can conclude that

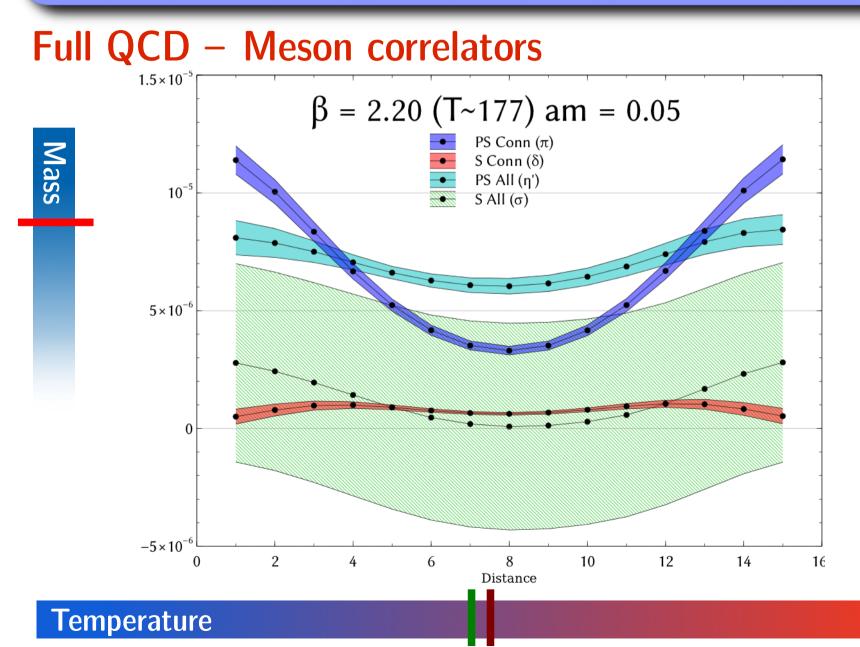
$$\lim_{\lambda \to 0} \lim_{m \to 0} \frac{\rho_m(\lambda)}{\lambda} = 0$$

12

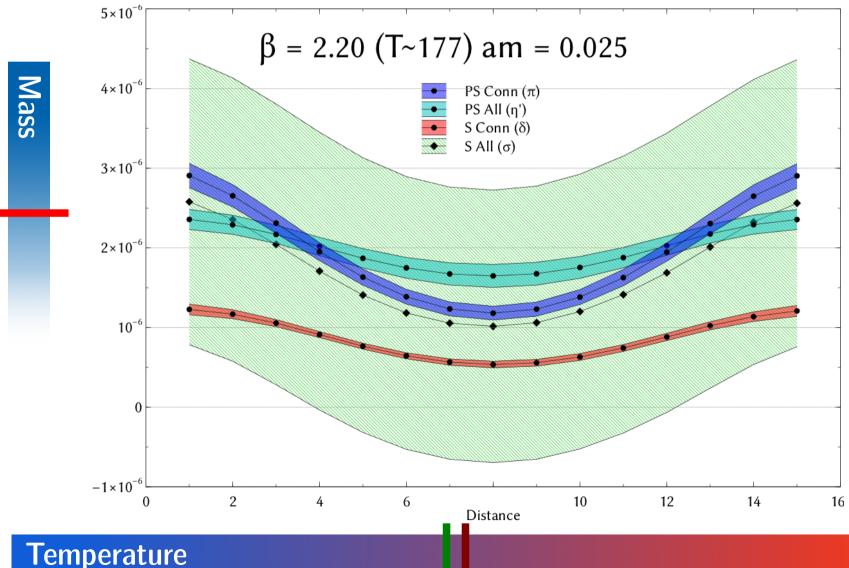
Full QCD – Meson correlators 1.5×10⁻ $\beta = 2.18$ (T ~ 170) Q=0, a=0.14 PS Connected (II) Mass S Connected (δ) S Connected (δ) 100 Eigen 10^{-5} PS All (ŋ') S All (σ) 5×10^{-1} 0 -5×10^{-6} 2.5 7.5 5 10 12.5 15 17.50

Temperature





Full QCD – Meson correlators



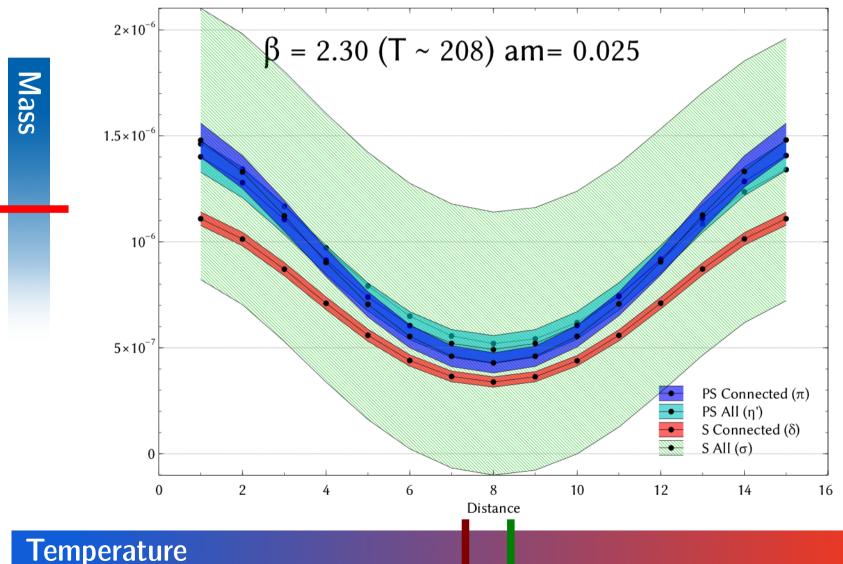
Full QCD – Meson correlators



Full QCD – Meson correlators 8×10⁻ $\beta = 2.30 (T \sim 208) am = 0.05$ Mass 6×10^{-6} 4×10^{-6} 2×10^{-6} 0 **PS** Connected (π) S Connected (δ) PS All (ŋ') -2×10^{-6} S All (σ) 2 10 0 4 6 8 12 14 16 Distance

Temperature

Full QCD – Meson correlators

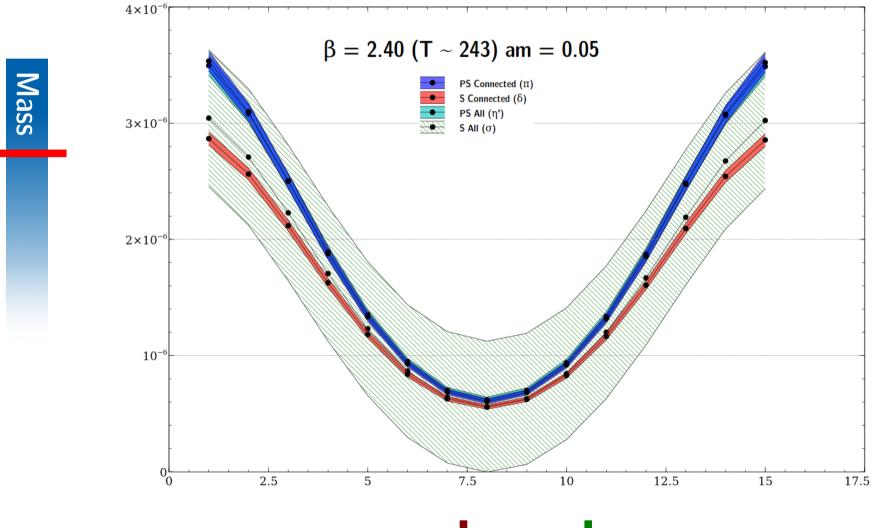


19

Full QCD – Meson correlators 2.5×10 $\beta = 2.30 (T \sim 208) am = 0.01$ Mass 2×10^{-7} 1.5×10^{-1} 10^{-7} 5×10⁻ PS Connected (π) PS All (ŋ') S Connected (δ) $S All(\sigma)$ 0 2 10 12 14 0 4 6 8 16 Distance

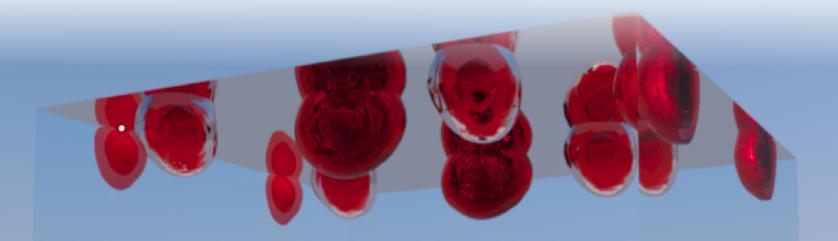
Temperature

Full QCD – Meson correlators

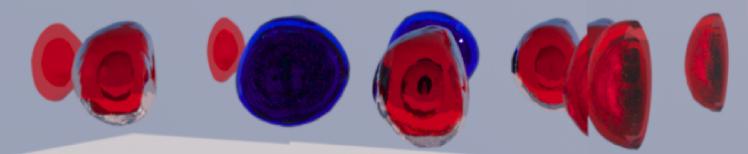


Summary

- Overlap fermions are the best choice to check axial anomaly at finite temperature
- Current machine and algorithms permit now realistic simulations...
- ...at the cost of fixing topology
- We checked feasibility by test runs in pure gauge theory
- In pure gauge systematic errors are under control.
- (almost) final results in Full QCD show restoration of $U_A(1)$ symmetry
- We need more data on chiral limit and check approach to T_c (1-2 weeks)

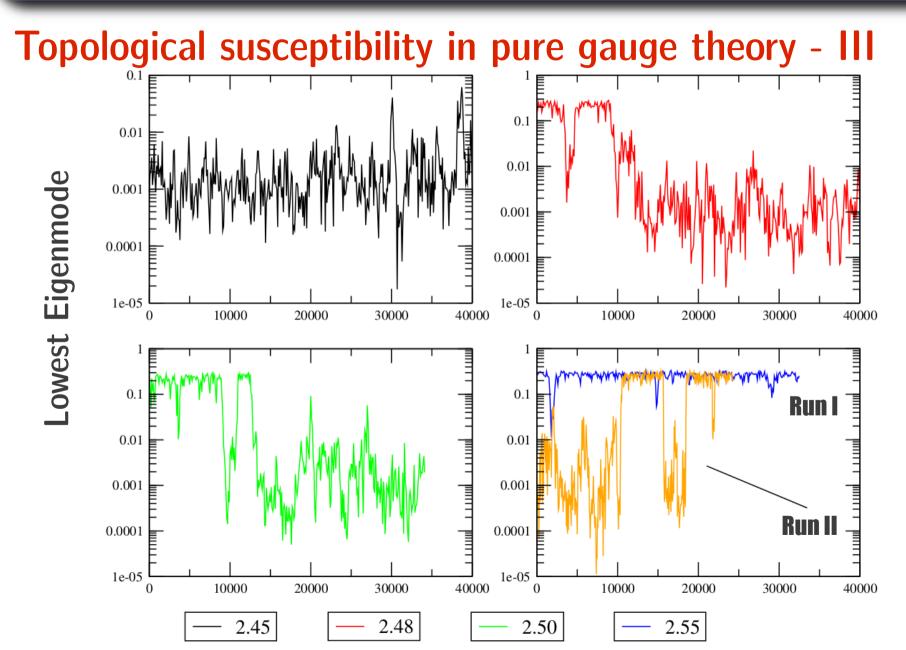


Thanks for your attention



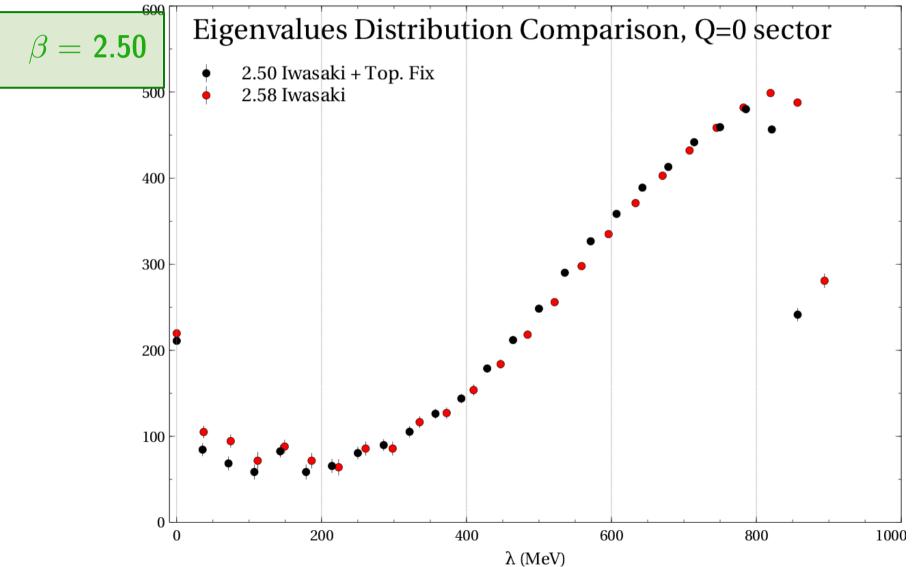
LuxRay Artistic Rendering of Lowest Eigenmode

Backup slides

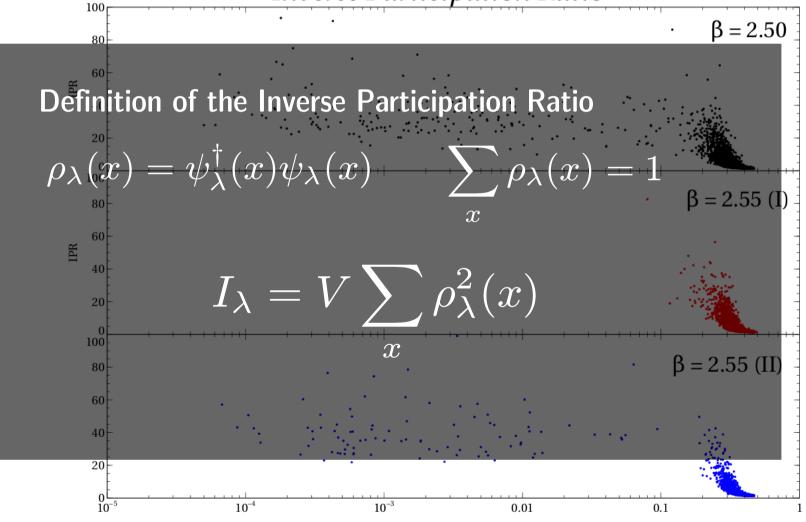


26

Topological susceptibility in pure gauge theory

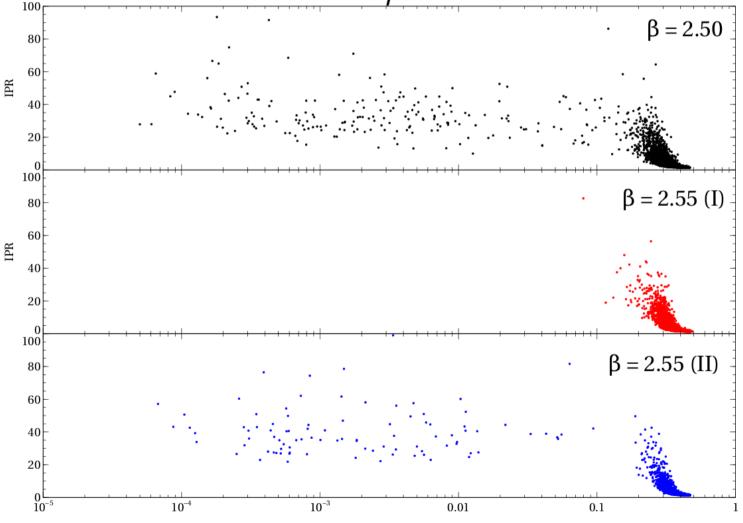


Topological susceptibility in pure gauge theory - VII *Inverse Participation Ratio*

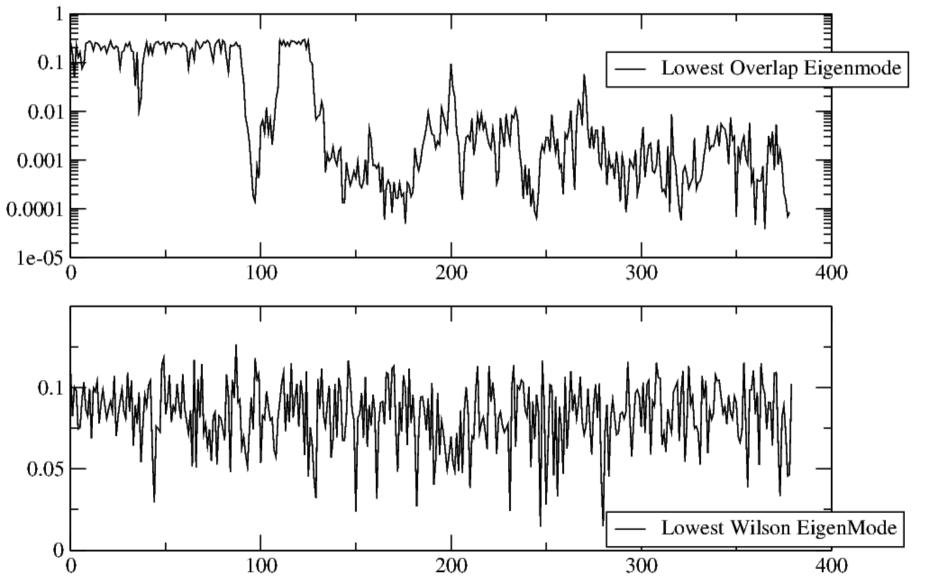


27

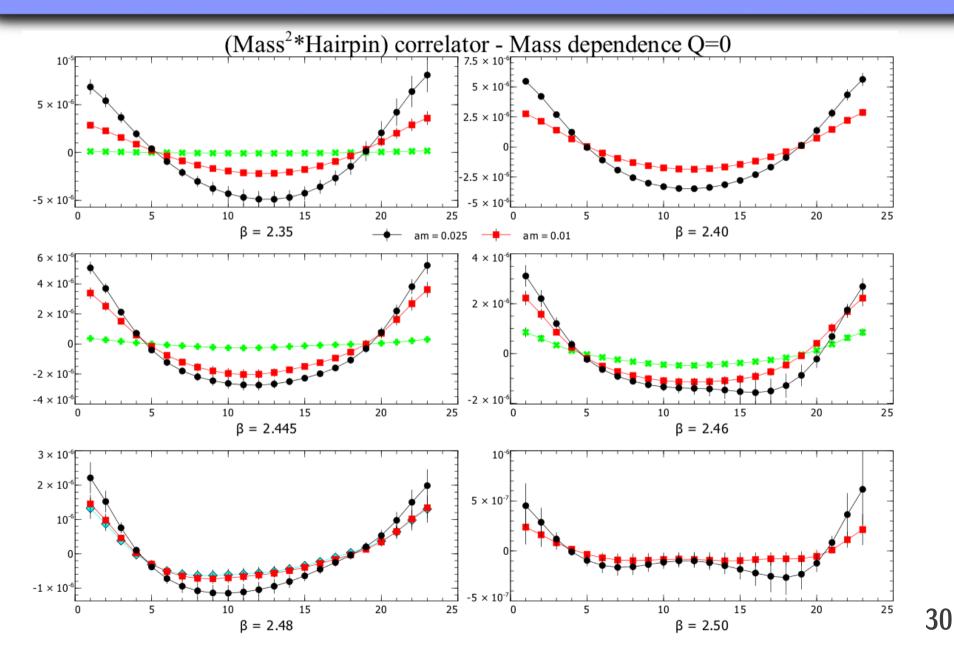
Topological susceptibility in pure gauge theory - VII *Inverse Participation Ratio*

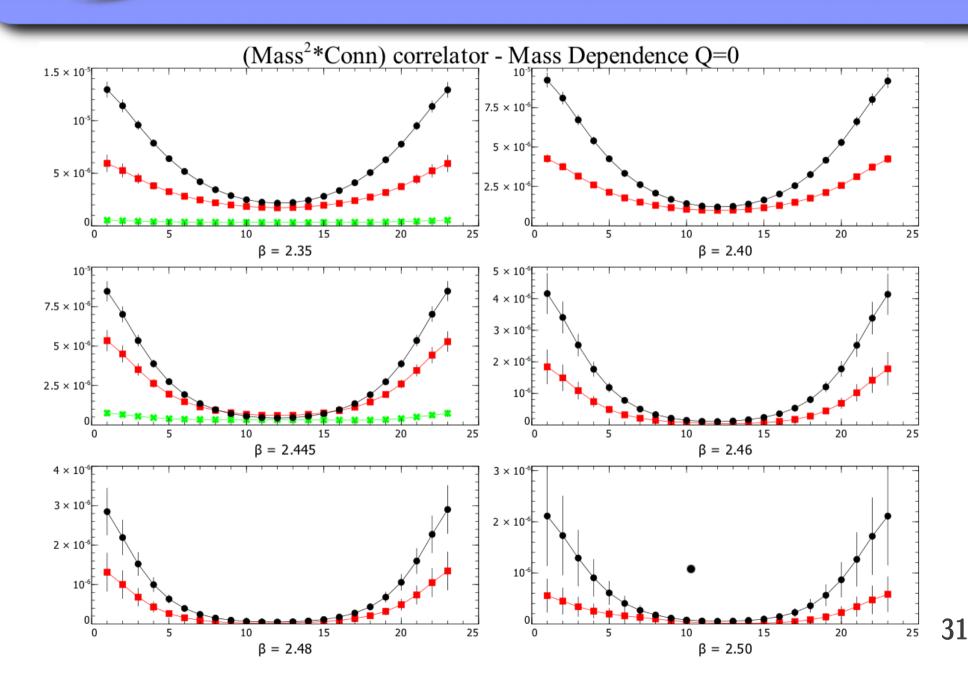


28



高エネルギー加速器研究機構 Topological susceptibility and axial symm. at FT





32

