

素核宇融合による計算基礎物理学の進展 -ミクロとマクロのかけ橋の構築-2011 年 12 月 3 日 ~ 5 日 於 合歓の郷

テンソルカに適した巨大次元殻模型による 中性子過剰ハイパー核の構造研究の進捗状況

(TOSM Calculation of Neutron-Rich Hypernuclei)

Atsushi UMEYA (NIT)

Takayuki MYO (OIT), Emiko HIYAMA (RIKEN) Hiroshi TOKI (RCNP), Kiyomi IKEDA (RIKEN)

To get information on baryon-baryon interaction

from the structure of hypernuclei

To get information on baryon-baryon interaction

from the structure of hypernuclei

S = -1 sector (ΛN int., ΣN int., ΛN - ΣN coupling int.)

To get information on baryon-baryon interaction

from the structure of hypernuclei

S = -1 sector (ΛN int., ΣN int., ΛN - ΣN coupling int.)

Effective ΛN interaction Hypernuclear γ -ray data since 1998 $V_{\Lambda N}^{\text{eff}} = V_0 + V_{\sigma\sigma} \sigma_N \cdot \sigma_\Lambda + V_{\text{SLS}} \ell_{\Lambda N} \cdot (s_\Lambda + s_N) + V_{\text{ALS}} \ell_{\Lambda N} \cdot (s_\Lambda - s_N) + V_{\text{Tensor}} S_{12}$

• Millener (*p*-shell model) Nucl. Phys. A 804, 84 (2008).

• Hiyama (Few-body) Prog. Part. Nucl. Phys. 63, 339 (2009).

 $\begin{array}{c|c} \Xi^{-}(dss) & \Xi^{0}(uss) & I=1/2, S=-2\\ 1322 & 1315 \end{array}$

To get information on baryon-baryon interaction

from the structure of hypernuclei

S = -1 sector (ΛN int., ΣN int., ΛN - ΣN coupling int.)

Effective ΛN interaction Hypernuclear γ -ray data since 1998

$$V_{\Lambda N}^{\text{eff}} = V_0 + V_{\sigma\sigma} \sigma_N \cdot \sigma_\Lambda + V_{\text{SLS}} \ell_{\Lambda N} \cdot (s_\Lambda + s_N) + V_{\text{ALS}} \ell_{\Lambda N} \cdot (s_\Lambda - s_N) + V_{\text{Tensor}} S_{12}$$

- Millener (*p*-shell model) Nucl. Phys. A 804, 84 (2008).
- Hiyama (Few-body) Prog. Part. Nucl. Phys. 63, 339 (2009).

One of the open questions in S=-1 sector of YN interaction

 Ξ^{0} (max)

 $\rightarrow \Lambda N$ - ΣN coupling interaction

Role of ΛN **-** ΣN **coupling interaction**

 ΛN - ΣN coupling \implies Great contribution to study of neutron star

Strength of the ΛN - ΣN coupling interaction \rightarrow still unknown

Studies for analysis of ΛN - ΣN coupling

s-shell hypernuclei

- Y. Akaishi *et al.*, Phys. Rev. Lett. 84, 3539 (2000).
- E. Hiyama *et al.*, Phys. Rev. C 65, 011341(R) (2001).
- A. Nogga et al., Phys. Rev. Lett. 88, 172501 (2002).
- H. Nemura et al., Phys. Rev. Lett. 89, 142504 (2002).
- *p*-shell hypernuclei (Shell-model study)
 - D. Halderson, Phys. Rev. C 77, 034304 (2008).
 - D.J. Millener, Nucl. Phys. A 804, 84 (2008).
 - A. Umeya, T. Harada, Phys. Rev. C 79, 024315 (2009).
 - A. Umeya, T. Harada, Phys. Rev. C 83, 034310 (2011).

ΛN - ΣN coupling in neutron-rich hypernuclei

Neutron-rich hypernuclei are suited for investigating the ΛN - ΣN coupling

```
Σ hyperon: Isospin I = 1
Neutron-rich nuclei: Large isospin \Rightarrow Large Σ-mixing
```


ΛN - ΣN coupling in neutron-rich hypernuclei

Neutron-rich hypernuclei are suited for investigating the ΛN - ΣN coupling

 Σ hyperon: Isospin I = 1

 $\rightarrow \frac{6}{\Lambda}H$

Neutron-rich nuclei: Large isospin

\Rightarrow Large Σ -mixing

Productions of neutron-rich Λ hypernuclei

• J-PARC E10 (spokes person: A. Sakaguchi)

• JLab Hall C E01-011 (spokes person: S.N. Nakamura)

analysis is in progress

$\begin{array}{l} \textit{ab initio} \mbox{ calculation for neutron-rich hypernuclei} \\ & \mbox{ with realistic interactions} \\ & \mbox{ taking into account } \Lambda N\mbox{-}\Sigma N \mbox{ coupling explicitly} \end{array}$

Nuclei: $_{\Lambda}$ He isotope \Rightarrow $_{\Lambda}$ Li isotope \Rightarrow $_{\Lambda}$ Be isotope \Rightarrow \cdots

Method: (1) Tensor-Optimized Shell Model (TOSM) T. Myo *et al.*, Prog. Theor. Phys. 117, 257 (2007). + Unitary Correlation Operator Method (UCOM) H. Feldmeier *et al.*, Nucl. Phys. A 632, 61 (1998). (2) Gaussian Expansion Method (GEM)

E. Hiyama *et al.*, Prog. Part. Nucl. Phys. 51, 223 (2003).

in collaboration with Myo, Hiyama, Toki, and Ikeda

$\begin{array}{l} \textit{ab initio} \mbox{ calculation for neutron-rich hypernuclei} \\ & \mbox{ with realistic interactions} \\ & \mbox{ taking into account } \Lambda N\mbox{-}\Sigma N\mbox{ coupling explicitly} \end{array}$

Nuclei: $_{\Lambda}$ He isotope \Rightarrow $_{\Lambda}$ Li isotope \Rightarrow $_{\Lambda}$ Be isotope \Rightarrow \cdots

Method: (1) Tensor-Optimized Shell Model (TOSM)

• Shell model taking into account a tensor force explicitly

Unitary Correlation Operator Method (UCOM) H. Feldmeier *et al.*, Nucl. Phys. A 632, 61 (1998).

(2) Gaussian Expansion Method (GEM)

E. Hiyama et al., Prog. Part. Nucl. Phys. 51, 223 (2003).

in collaboration with Myo, Hiyama, Toki, and Ikeda

$\begin{array}{l} \textit{ab initio} \mbox{ calculation for neutron-rich hypernuclei} \\ & \mbox{ with realistic interactions} \\ & \mbox{ taking into account } \Lambda N\mbox{-}\Sigma N\mbox{ coupling explicitly} \end{array}$

Nuclei: $_{\Lambda}$ He isotope \Rightarrow $_{\Lambda}$ Li isotope \Rightarrow $_{\Lambda}$ Be isotope \Rightarrow \cdots

Method: (1) Tensor-Optimized Shell Model (TOSM)

• Shell model taking into account a tensor force explicitly

Unitary Correlation Operator Method (UCOM)

• To describe short-range correlations which are included in NN, YN interactions by using correlation functions

in collaboration with Myo, Hiyama, Toki, and Ikeda

ab i	Suited for a systematic investigation of nuclei with $A = 3-10$ without supposing an α cluster						
Nucl							
Method: (1) Tensor-Optimized Shell Model (TOSM)							
	 Shell model taking into account a tensor force explicitly 						
Unitary Correlation Operator Method (UCOM)							
	• To describe short-range correlations which are included in NN, YN interactions by using correlation functions						
	in collaboration with Myo, Hiyama, Toki, and Ikeda						

<i>ab i</i>	<pre>Suited for a systematic investigation of nuclei with A = 3–10 without supposing an α cluster But, insufficient accuracy of about a few MeV → extending to about a few hundred keV</pre>						
Method: (1) Tensor-Optimized Shell Model (TOSM)							
	Shell model taking into account a tensor force explicitly Unitary Correlation Operator Method (UCOM)						
	• To describe short-range correlations which are included in NN, YN interactions by using correlation functions						
	in collaboration with Myo, Hiyama, Toki, and Ikeda						

40

20

0

-20

-40

-60

۷C

2

4

0

[MeV]

 V_{LS}

6

8

max

Energy

⁴He with AV8'

10 12 14 16

(Kamada *et al.*, Phys. Rev. C 64, 044001 (2001).)

Energy of ⁴He TOSM with AV8' -22.3 MeV Benchmark test calculation -25.9 MeV

Energy of ⁴He in TOSM as a function of the maximum angular momentum **T.** Myo *et al.*, **Prog. Theor. Phys. 121, 511 (2009).**

Dec. 3, 2011

Example of TOSM calculation (Energy spectra of He isotope)

In this talk...

• Contributions of components of YN interactions to binding energies of $^4_\Lambda H$ and $^5_\Lambda He$

Interactions

• NN interaction

AV8' B.S. Pudliner *et al.*, Phys. Rev. C 56, 1720 (1997).

• YN interaction

$$V_{YN} = V_0^{YN} + \sigma \cdot \sigma V_{\sigma}^{YN} + \ell \cdot s V_{\ell s}^{YN} + S_{12} V_{\text{tensor}}^{YN}$$

made by S. Shinmura

simulated NSC97f (not original NSC97f)

used in few-body calculations E. Hiyama *et al.*, Phys. Rev. C 65, 011301(R). H. Nemura *et al.*, Phys. Rev. Lett. 89, 142504 (2002).

Numerical results of energy levels of ${}^{4}_{\Lambda}H$, ${}^{5}_{\Lambda}He$

[1] E. Hiyama *et al.*, Phys. Rev. C 65, 011301(R) (2001).
[2] H. Nemura *et al.*, Phys. Rev. Lett. 89, 142504 (2002).
(G3RS potential is used in [2].)

R. Tamagaki, Prog. Theor. Phys. 39, 91 (1968).

insufficient convergence \rightarrow in progress of calculations with $l_{\text{max}} = 20$

Role of ΛN - ΣN **coupling**

$\langle V_{Y\!N} angle$ in	$^4_{\Lambda}\mathrm{H};0^+$		(MeV)	$\langle V_{Y\!N} \rangle$ in ${}^4_\Lambda { m H}; 1^+$			(MeV)
	Central	Tensor	LS		Central	Tensor	LS
$\overline{N\Lambda}$ - $N\Lambda$	-5.46	-1.11	-0.16	$N\Lambda$ - $N\Lambda$	-1.99	-0.60	-0.04
$N\Lambda$ - $N\Sigma$	-3.42	-8.75	0.30	$N\Lambda$ - $N\Sigma$	-1.38	-9.13	0.13
ΝΣ-ΝΣ	0.45	-2.04	-0.06	$N\Sigma$ - $N\Sigma$	0.64	-0.30	-0.09
$\langle V_{YN} \rangle$ in ${}^5_{\Lambda}$ He			(MeV)				
	Central	Tensor	LS				
$\overline{N\Lambda}$ - $N\Lambda$	-3.86	-0.64	-0.03				
$N\Lambda$ - $N\Sigma$	-1.43	-10.52	0.12				
$N\Sigma$ - $N\Sigma$	0.70	-0.08	-0.12				

These results are qualitative agreement with the few-body calculationby H. Nemura.H. Nemura *et al.*, Phys. Rev. Lett. 89, 142504 (2002).

Future plan

- to get a sufficient energy convergence of a few hundred keV (in progress of calculations with $l_{max} = 20$)
 - \rightarrow We can get the results which are close to *ab initio* calculation.
- quantitative discussion of role of the ΛN - ΣN coupling interaction

ab initio like calculations for *p*-shell hyper nuclei without supposing an α cluster
 → prediction of energy levels of _∧He isotope up to A = 9

Backup

Correlation functions in $^{4}_{\Lambda}$ He

 The correlation function of *YN* interaction is different from that of *NN* interaction.
 ↓

The UCOM parameters of *YN* **int. should be different from those of** *NN* **int.**

• In the present calculation, the same UCOM parameters are used for *NN* and *YN* int.

E. Hiyama et al., Phys. Rev. C 65, 011301(R) (2001).

Dec. 3, 2011

Energy convergence of ³H and ⁴He

Dec. 3, 2011

Matter radius of He isotopes in TOSM

Exp. data

I. Tanihata et al., Phys. Lett. B 289, 261 (1992). / G.D. Alkhazov et al., Phys. Rev. Lett. 78, 2313 (1997).

O.A. Kiselev et al., Eur. Phys. J. A 25, Suppl. 1, 215 (2005). / P. Mueller et al., Phys. Rev. Lett. 99, 252501 (2007).