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Targets of tensor network methods
• Lattice models

We want to find novel states of the matter 
• Quantum spin liquids!
• Topological phases!
• Valence Bond Solids!
• …
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order and/or freezing is observed, by using NMR spectroscopy, at T < 1 K 
(ref. 56). More over, recent experiments show that this compound has a 
complex series of low-temperature phases in an applied magnetic field56. 
Given the exceptionally high purity of Cu3V2O7(OH)2•2H2O, an expla-
nation of its phase diagram should be a clear theoretical goal. 

Theoretical interpretations
I now turn to the theoretical evidence for QSLs in these systems and 
how the experiments can be reconciled with theory. Theorists have 
attempted to construct microscopic models for these materials (Box 2) 
and to determine whether they support QSL ground states. In the case 
of the organic compounds, these are Hubbard models, which account 
for significant charge fluctuations. For the kagomé materials, a Heisen-
berg model description is probably ap propriate. There is general theo-
retical agreement that the Hubbard model for a triangular lattice has 
a QSL ground state for intermediate-strength Hubbard repulsion near 
the Mott transition57–59. On the kagomé lattice, the Heisenberg model 
is expected to have a non-magnetic ground state as a result of frus-
tration60. Recently, there has been growing theoretical support for the 
conjecture that the ground state is, however, not a QSL but a VBS with 
a large, 36-site, unit cell61,62. However, all approaches indicate that many 
competing states exist, and these states have extremely small energy dif-
ferences from this VBS state. Thus, the ‘real’ ground state in the kagomé 
materials is proba bly strongly perturbed by spin–orbit coupling, dis-
order, further-neighbour interactions and so on63. A similar situation 
applies to the hyperkagomé lattice of Na4Ir3O8 (ref. 64).

These models are difficult to connect directly, and in detail, to 
experi ments, which mainly measure low-energy properties at low tem-
peratures. Instead, attempts to reconcile theory and experiment in detail 
have re lied on more phenomenological low-energy effective theories 
of QSLs. Such effective theories are similar in spirit to the Fermi liquid 
theory of interacting metals: they propose that the ground state has a 
certain structure and a set of elementary excitations that are consistent 
with this structure. In contrast to the Fermi liquid case, however, the 
elementary excitations consist of spinons and other exotic par ticles, 
which are coupled by gauge fields. A theory of this type — that is, pro-
posing a ‘spinon Fermi surface’ coupled to a U(1) gauge field — has 
had some success in explaining data from experiments on κ-(BEDT-
TTF)2Cu2(CN)3 (refs 65, 66). Related theories have been proposed for 
ZnCu3(OH)6Cl2 (ref. 67) and Na4Ir3O8 (ref. 68). However, comparisons 

for these materials are much more limited. In all cases, the comparison 
of theory with experiment has, so far, been indirect. I return to this 
problem in the subsection ‘The smoking gun for QSLs’.

Unexpected findings
In the course of a search as difficult as the one for QSLs, it is natural for 
there to be false starts. In several cases, researchers uncovered other 
interesting physical phenomena in quantum magnetism.

Dimensional reduction in Cs2CuCl4
Cs2CuCl4 is a spin-½ antiferromagnet on a moderately anisotropic 
trian gular lattice69,70. It shows only intermediate frustration, with f ≈ 8, 
ordering into a spiral Néel state at TN = 0.6 K. However, neutron-scat-
tering results for this compound reported by Coldea and colleagues 
suggested that exotic physical phenomena were occurring69,70. These 
experiments measure the type of excitation that is created when a neu-
tron interacts with a solid and flips an electron spin. In normal mag-
nets, this creates a magnon and, correspondingly, a sharp resonance is 
observed when the energy and momentum transfer of the neutron equal 
that of the magnon. In Cs2CuCl4, this resonance is extremely small. 
Instead, a broad scattering feature is mostly observed. The interpreta-
tion of this result is that the neutron’s spin flip creates a pair of spinons, 
which divide the neutron’s en ergy and momentum between them. The 
spinons were suggested to arise from an underlying 2D QSL state.

A nagging doubt with respect to this picture was the striking similar-
ity between some of the spectra in the experiment and those of a 1D 
spin chain, in which 1D spinons indeed exist71. In fact, in Cs2CuCl4 the 
exchange energy along one ‘chain’ direction is three times greater than 
along the diagonal bonds between chains (that is, Jʹ ≈ J/3 in Fig. 1a). 
Experimentally, however, the presence of substantial transverse disper-
sion (that is, dependence of the neutron peak on momentum perpendic-
ular to the chain axis in Cs2CuCl4), and the strong influence of interchain 
coupling on the magnetization curve, M(H), seemed to rule out a 1D 
origin, despite an early theoretical suggestion72.

In the past few years, it has become clear that discarding the idea of 
1D physics was premature73,74. It turns out that although the interchain 
coupling is substantial, and thus affects the M(H) curve significantly, 
the frustration markedly reduces interchain correlations in the ground 
state. As a result, the elementary excitations of the system are simi-
lar to those of 1D chains, with one important exception. Because the 

Figure 3 | Valence-bond states of frustrated antiferromagnets. In a VBS 
state (a), a specific pattern of entangled pairs of spins — the valence bonds 
— is formed. Entangled pairs are indicated by ovals that cover two points 
on the triangular lattice. By contrast, in a RVB state, the wavefunction is a 

superposition of many different pairings of spins. The valence bonds may 
be short range (b) or long range (c). Spins in longer-range valence bonds 
(the longer, the lighter the colour) are less tightly bound and are therefore 
more easily excited into a state with non-zero spin. 
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Spin liquid (RVB)
(L. Balents, Nature (2010)より)

VBS

Localized spin system:
Spin operator, typically S=1/2

*Spins located on a lattice:
square, triangular, cubic, …

We want to investigate phase transition
• (Quantum) critical phenomena!
• Topological phase transition!
• … :singlet 



Targets of tensor network methods

Itinerant electron systems:

• Lattice models

:creation operator of an electron.

We are interested in
• Super conductivity!
• Non-equilibrium phenomena!
• …

A lot of interesting things occur !
in the Avogadro scale ~ 10

We need large scale calculations.

(Hubbard model)



Numerical methods
Numerical diagonalization

Exact and applicable for any systems, but 
S=1/2 spin models ~ 40 sites
Hubbard model ~ 20 sites

Quantum Monte Carlo (QMC)

Interesting problems are usually!
suffer from the 

Dynamical Mean Field Theory (DMFT)

We need careful extrapolation.!
(It is often very difficult.)

Within statistical error, solving problem “exactly”!!
Easy calculation for 

But, 

Kind of mean-field 

 Temporal quantum fluctuations are treated !
accurately through a few sites 

Success in description of!
metal - insulator !
phase transition



Numerical methods
Variational method

• Variational Monte Carlo

• Tensor network methods (including DMRG)

Assuming a wave-function ansatz with several parameters.
Determining parameters so as to minimize the energy.

Calculate energy using Monte Carlo sampling
No sign problems.
Larger system size than the diagonalization.

Wave-function is represented by 
No sign problems.
Very large system size (or infinite)



Tensor network method
G.S. wave function:

T：N-rank tensor # of Elements＝2NT
m1 m2 m3 m4 m5``Tensor network” 

decomposition

=

General network

m1 m2

m3

m4

m5

X,Y : Tensors

Tr : Tensor network contraction

Matrix Product State 
(MPS)

：Matrix for state m

=
m1 m2 m3 m4 m5

D: dimension of the matrix A

By choosing a ``good” network, we can express G.S. wave function efficiently.

ex. MPS: # of elements ＝2ND2

Exponential→ Linear *If D does not depend on N…



Family of tensor network states

MPS:
Work well in one-dimensional systems

DMRG, TEBD, …

PEPS,TPS:
two or higher dimensional systems

generalization of MPS

MERA:
Suitable for a !

scale invariant states
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Quantum Entanglement
Reduced density matrix of the subsystem.

Entanglement entropy 

A lot of ground state
:Area low

L: boundary length

sub

env

general states: :Volume low

1-dimensional gapless system:

Metallic system :



Entanglement entropy of MPS and PEPS
MPS

MPS for 2D

PEPS on square lattice• Entanglement entropy of PEPS

For sufficiently large, but finite, D,!
a lot of ground states of very large 

(infinite) system can be represented 
by PEPS!

• Entanglement entropy of MPS

In order to represent the entanglement entropy,!
we need exponentially large matrix dimension!

for two and higher dimensions.

Sub-system connected to the environment 
through only two bonds.

For matrix dimension D:

For tensor dimension D:

sub

sub

sub



Advantage of tensor network method
Efficient representation of the ground state

MPS (for d=1) and PEPS (for 2 > d)  can represent !
the ground state wave-function for very large system efficiently. 

Finite tensor-dimension

Applicable to any system

No sign problems!

Small bias 
• Assumed wave-function contains large # of elements.!
• The shapes of  MPS and PEPS reflect only underlying lattice geometry.



Difficulties 
1. High computational costs for contraction of the network

For two or higher dimensions, tensor dimensions are limited:!
 D~10

2D- PEPS:

For PEPS:
PEPS on square lattice

Calculation of the entire tensor products need!
exponentially large costs

We use 

But, still very high cost.

O(D MPS: O(D



Difficulties 
2. Fermionic system with fermi surface (metal, semi-metal) 

PEPS need

Entanglement entropy has a 

• Another tensor network states: branching MERA?!
• Combination with variational Monte Carlo ?!
• ….

Challenging problem!



Partition function representation
Partition function:

Z can be represented by 

2

imately expressed as a courser tensor network made of

just N/4 copies of A(1), Z ⇡ tTr
⇣
⌦N/4

x=1A
(1)

⌘
. By itera-

tion, a sequence of tensors A(0) ! A(1) ! A(2) · · · will
be produced such that, for any length scale s,

Z ⇡ tTr
⇣
⌦Ns

x=1A
(s)

⌘
, Ns ⌘ N/4s. (2)

We see that after just s̃ ⌘ log4(N) iterations [assuming
N = 4s̃], the partition function Z becomes the trace of

a single tensor A(s̃), Z ⇡
P

ij A
(s̃)
ijij , which we can finally

evaluate [10]. Alternatively, in the thermodynamic limit
N ! 1, we can study the RG flow of tensors A(s) as
we progress to larger length scales s. In particular, the
possible fixed-point tensor of this flow will contain the
universal properties of the phases and phase transition
of the system.

Tensor Network Renormalization.— Our coarse-
graining transformation for the tensor network of the par-
tition function Z in Eq. 1 will result from applying one
simple rule and following a guiding principle.

Firstly, the rule: “We are allowed to insert resolutions
of the identity in the tensor network”, since this will not
a↵ect the partition function Z that it represents. For this
purpose, we regard each index of the network as hosting
a �-dimensional complex vector space V ⌘ C�. We con-
sider two cases, see Fig. 1(c): (i) a joint change of basis
on two indices, which mixes the corresponding degrees of
freedom by means of a unitary transformation u, where
u : V ⌦ V ! V ⌦ V, with uu† = u†u = I⌦2, analogous
to a disentangler in the context of entanglement renor-
malization [6]; (ii) a combination of two indices into a
single one, by means of an isometry v (v or w in Fig.
1(c)), v : V ! V ⌦ V, with v†v = I. Notice that vv† is
a �-dimensional projector acting on the �2-dimensional
space V⌦ V. Strictly speaking, then, we should only in-
sert vv† when it acts on tensors that happen to vanish in
the remaining �(� � 1)-dimensional subspace. In prac-
tice, however, even if this condition is not exactly fulfilled
we will still insert the projector vv† if it only introduces
a small truncation error, as measured by the norm |�|
of the di↵erence operator � defined in Fig. 1(d), since
a small truncation error |�| guarantees that the result-
ing tensor network is still a good approximation to the
partition function Z.

Fig. 2 shows graphically the proposed TNR transfor-
mation. In step (a), disentanglers and isometries are in-
serted between blocks of 2⇥2 tensorsA(s). In step (b) two
types of auxiliary tensors, B(s) and C(s), are produced
by contracting indices. In step (c) tensors B and C are
split using a singular value decomposition, as it is done
in TRG [2]. Finally, in step (d) the coarse-grained tensor
A(s+1) at scale s + 1 is obtained by further contraction
of indices. The disentanglers and isometries introduced
in step (a) are chosen so as to minimize the truncation
error |�| in Fig. 1(d), using well-established, iterative

FIG. 1. (a) We consider a square lattice (slanted 45�) of clas-
sical spins, where �k 2 {+1,�1} is an Ising spin on site k.
(b) Graphical representation of a part of the tensor network,
where each circle denotes a tensor A, for the partition function
Z of the classical spin model, see Eq. 1. Here tensor Aijkl

encodes the Boltzmann weights of the spins {�i,�j ,�k,�l}
according to the Hamiltonian function H, see Eq.4. (c) In-
sertion of a pair of disentanglers u†u between four tensors,
where tensors Ã are obtained from tensors A through a gauge
transformation on their horizontal indices [9], followed by an
insertion of four projectors of the form vv† in terms of isome-
tries. Since these projectors are not a resolution of the iden-
tity, they introduce an error in the tensor network. (d) Tensor
�, whose norm |�| measures the truncation error introduced
by the isometries v and w. Disentanglers and isometries are
chosen so as to minimize |�|.

optimization methods for unitary and isometric tensors
[7]. The overall computational cost of computing tensor
A(s+1) from tensor A(s) scales as O(�7) [11].
The scheme above has been designed to conform to the

following guiding principle: “The coarse-graining trans-
formation should eliminate all short-range correlations”.
It is of course hard to know a priori whether a given
scheme will obey this (admittedly vague) principle, but
we can at least state a testable necessary condition that
the scheme should fulfill. Namely, when there are only
short-range correlations (for instance, in the form of a
so-called CDL tensor, see Appendix A), then the coarse-
graining transformation should be able to remove them
completely and produce a trivial tensor Atriv, one with an
e↵ective dimension �0 = 1 [12]. The essential novel fea-
ture of TNR becomes clear if we set the disentanglers to

from G. Evenbly and G. Vidal, arXiv:1412.0732.

Example: classical Ising model on the 

*For quantum system:

Path integral representation 1+d dimensional tensor network

i

j
k

l



Contraction and renormalization

=
Contraction: exponentially large cost

Using real space renormalizationApproximation:
Tensor Renormalization Groupe (TRG)

i

j
k

l

Decomposition

Renormalization

M. Levin and C. P. Nave PRL (2007)



Improved renormalization method
Problems in TRG: TRG does not represent 

Especially, 

New renormalization methods: Tensor Network Renormalization (TNR)
G. Evenbly and G. Vidal, arXiv:1412.0732.
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be trivial, namely u = I. Then it can be seen that TNR
reduces to TRG [13]. Recall that TRG fails to completely
remove short-range correlations (see Appendix A). On
the other hand, a judicious choice of disentangler u can
be seen to indeed be su�cient to transform ACDL into
Atriv (see Appendix A). Thus the key new ingredient
here is the insertion of disentanglers, which eliminate the
short-range correlations that TRG failed to remove [14].

Example: Partition function of the 2D classical Ising
model.— We consider the partition function

Z =
X

{�}

e�H({�})/T , H ({�}) = �
X

hi,ji

�i�j (3)

on the square lattice, where �k 2 {+1,�1} is an Ising
spin on site k and T denotes the temperature. Recall
that this model has a global Z2 symmetry: it is invariant

FIG. 2. Steps (a)-(d) of a TNR transformation to produce

A(s+1) from A(s), as explained in the main text. Notice that
in step (a), the insertion of disentanglers and isometries is
made according to Fig. 1(b) . The insets (e)-(g) contain

the definition of the auxiliary tensors B(s) and C(s) and the
coarse-grained tensor A(s+1).

FIG. 3. Benchmark results for the square lattice Ising model
on a lattice with over 134 million spins. (a) Error in the free
energy per site at temperature T , comparing TRG and TNR
with bond dimensions � = {4, 8} [15]. The error in TNR
is roughly two orders of magnitude smaller in all cases. (b)
Spontaneous magnetization M(T ), both exact and obtained
with TNR with � = 4. Even very close to the critical tem-
perature, T = 0.9994 Tc, the magnetization M ⇡ 0.48 is
reproduced to within 1% accuracy.

under the simultaneous flip �k ! ��k of all the spins.
We first obtain an exact representation for the tensor A
in Eq. 1 in terms of four Boltzmann weights e�i�j/T ,

Aijkl = e(�i�j+�j�k+�k�l+�l�i)/T , (4)

which corresponds to having one tensor A for every two
spins, and a tensor network with a 45 degree tilt with
respect to the spin lattice, see Fig.1(a,b). We then con-
tract a 2 ⇥ 2 square of tensors A to form a new tensor
A(0) of bond dimension � = 4, which serves as the start-
ing point for the TNR approach. We then apply up to 12
TNR transformations to a system made of N = 212⇥212

tensors A(0), or equivalently 2⇥ 4⇥N Ising spins.
Fig. 3(a) shows the error in the free energy per

site, f ⌘ log(Z)/N , as a function of the temperature
T , in a neighborhood of the critical temperature Tc ⌘
2/ ln(1 +

p
2) ⇡ 2.269, for bond dimension � = {4, 8}

[15]. TNR makes an error that is roughly two orders
of magnitude smaller than that of TRG for the same
bond dimension. Figure 3(b) shows the exact curve of
the spontaneous magnetization M(T ) as well as the nu-
merical values obtained with TNR for � = 4. Remarkable
agreement is achieved throughout, even very close to the
critical temperature.
However, the most significant feature of TNR is re-

vealed in Fig. 4, which shows, as a function of the scale
s, the spectrum of singular values of tensor A(s) when
regarded as a matrix [A(s)](ij)(kl). Fig. 4(a) considers
the critical point, T = Tc, and shows that under TNR,
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⇣
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⇣
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(s)

⌘
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We see that after just s̃ ⌘ log4(N) iterations [assuming
N = 4s̃], the partition function Z becomes the trace of

a single tensor A(s̃), Z ⇡
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ij A
(s̃)
ijij , which we can finally

evaluate [10]. Alternatively, in the thermodynamic limit
N ! 1, we can study the RG flow of tensors A(s) as
we progress to larger length scales s. In particular, the
possible fixed-point tensor of this flow will contain the
universal properties of the phases and phase transition
of the system.

Tensor Network Renormalization.— Our coarse-
graining transformation for the tensor network of the par-
tition function Z in Eq. 1 will result from applying one
simple rule and following a guiding principle.

Firstly, the rule: “We are allowed to insert resolutions
of the identity in the tensor network”, since this will not
a↵ect the partition function Z that it represents. For this
purpose, we regard each index of the network as hosting
a �-dimensional complex vector space V ⌘ C�. We con-
sider two cases, see Fig. 1(c): (i) a joint change of basis
on two indices, which mixes the corresponding degrees of
freedom by means of a unitary transformation u, where
u : V ⌦ V ! V ⌦ V, with uu† = u†u = I⌦2, analogous
to a disentangler in the context of entanglement renor-
malization [6]; (ii) a combination of two indices into a
single one, by means of an isometry v (v or w in Fig.
1(c)), v : V ! V ⌦ V, with v†v = I. Notice that vv† is
a �-dimensional projector acting on the �2-dimensional
space V⌦ V. Strictly speaking, then, we should only in-
sert vv† when it acts on tensors that happen to vanish in
the remaining �(� � 1)-dimensional subspace. In prac-
tice, however, even if this condition is not exactly fulfilled
we will still insert the projector vv† if it only introduces
a small truncation error, as measured by the norm |�|
of the di↵erence operator � defined in Fig. 1(d), since
a small truncation error |�| guarantees that the result-
ing tensor network is still a good approximation to the
partition function Z.

Fig. 2 shows graphically the proposed TNR transfor-
mation. In step (a), disentanglers and isometries are in-
serted between blocks of 2⇥2 tensorsA(s). In step (b) two
types of auxiliary tensors, B(s) and C(s), are produced
by contracting indices. In step (c) tensors B and C are
split using a singular value decomposition, as it is done
in TRG [2]. Finally, in step (d) the coarse-grained tensor
A(s+1) at scale s + 1 is obtained by further contraction
of indices. The disentanglers and isometries introduced
in step (a) are chosen so as to minimize the truncation
error |�| in Fig. 1(d), using well-established, iterative

FIG. 1. (a) We consider a square lattice (slanted 45�) of clas-
sical spins, where �k 2 {+1,�1} is an Ising spin on site k.
(b) Graphical representation of a part of the tensor network,
where each circle denotes a tensor A, for the partition function
Z of the classical spin model, see Eq. 1. Here tensor Aijkl

encodes the Boltzmann weights of the spins {�i,�j ,�k,�l}
according to the Hamiltonian function H, see Eq.4. (c) In-
sertion of a pair of disentanglers u†u between four tensors,
where tensors Ã are obtained from tensors A through a gauge
transformation on their horizontal indices [9], followed by an
insertion of four projectors of the form vv† in terms of isome-
tries. Since these projectors are not a resolution of the iden-
tity, they introduce an error in the tensor network. (d) Tensor
�, whose norm |�| measures the truncation error introduced
by the isometries v and w. Disentanglers and isometries are
chosen so as to minimize |�|.

optimization methods for unitary and isometric tensors
[7]. The overall computational cost of computing tensor
A(s+1) from tensor A(s) scales as O(�7) [11].
The scheme above has been designed to conform to the

following guiding principle: “The coarse-graining trans-
formation should eliminate all short-range correlations”.
It is of course hard to know a priori whether a given
scheme will obey this (admittedly vague) principle, but
we can at least state a testable necessary condition that
the scheme should fulfill. Namely, when there are only
short-range correlations (for instance, in the form of a
so-called CDL tensor, see Appendix A), then the coarse-
graining transformation should be able to remove them
completely and produce a trivial tensor Atriv, one with an
e↵ective dimension �0 = 1 [12]. The essential novel fea-
ture of TNR becomes clear if we set the disentanglers to

Point

Insertion of disentangler

efficient renormalization of 
short range correlation

TNR can produce renormalization flow to the physical fixed point!

arXiv:1502.05385.



Summary

• Tensor network methods are efficient tools to 
investigate condensed matter physics!

• As the ansatz of variational wave-functions!

• As a tool for efficient Real space renormalization 


