Background – high energy physics motivation and situation of the study of QCD

K. Nagata (KEK)

10sor network workshop, 2015/05/14

Introduction – strong interactions and its applications

Introduction

Four fundamental forces

- gravity
- weak interaction
- electromagnetism
- strong interaction

Motivations in particle/nuclear physics

- uniification of the forces
- understanding microscopic theory
- microscopic description of nature
- etc

- Nuclei are electromagnetically unstable
 - nuclear force ~ pion exchange
- Even protons, neutrons are not elementary particles
 - Elementary particles : quarks and gluons
 - Fundamental theory : QCD = SU(3) gauge theory

Applications of QCD

Basic properties of QCD

QCD

$$\mathcal{L} = \frac{1}{4} (F_{\mu\nu}^{a})^{2} + \bar{\psi} (iD_{\mu}\gamma^{\mu} - m)\psi^{\text{quark (fermion)}}$$

$$F_{\mu\nu}^{a} = \partial_{\mu}A_{\nu}^{a} - \partial_{\nu}A_{\mu}^{a} + igf^{abc}A_{\mu}^{b}A_{\nu}^{c} \qquad D_{\mu} = \partial_{\mu} - igA_{\mu}^{a}t^{a}$$

$$from Itou \ \text{san's slide}$$

$$gluon (gauge \ \text{boson}),$$

$$(a=1,...,8, \ \mu=1,...,4) \qquad \text{non-Abelian term}$$

$$(does \ \text{not exist in QED})$$

Quarks have three internal d.o.f

- spin
- color (r, g, b)
- flavor (up, down, strange, charm, botom, top), (cf : e, μ, tau)
- The bare quark mass is approximately zero for light quarks
- Only color singlet states are physical states

QED and QCD

$$\mathcal{L} = \frac{1}{4} (F^a_{\mu\nu})^2 + \bar{\psi} (iD_\mu \gamma^\mu - m) \psi \qquad \text{From Itou san's slide}$$
$$F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + igf^{abc} A^b_\mu A^c_\nu \qquad D_\mu = \partial_\mu - igA^a_\mu t^a$$

	QED	QCD
quantum #	electric charge U(1)	color SU(3)
	electron	quark (flavor and color)
gauge bosons	photon(A _µ)	gluon (A _µ ^a ,a=1~8) <mark>(self- interacting)</mark>
$\alpha = g^2/4\pi$	1/137	O(1)

Features of QCD - symmetry breaking

- Chiral symmetry (for light flavor) is spontaneously broken SU(N_f)_LxSU(N_f)_R ->SU(N_f)_V
- pion mass ~ 140 MeV << proton mass ~ 940 MeV
 - pions are NG bosons [Nambu-Jona-Lasinio(1961)]
 - small pion mass is generated by small quark mass
 - responsible for moderate range of nuclear force
- quark mass is dynamically generated

SBCS is a good example for analog between QCD and condensed matter physics

Features of QCD - confinement

- Only color singlet states are allowed to exist asymptotically
- phenomenological explanation is given by e.g. quarkanti-quark potential

heavy quark-anti quark potential Bali (2000)

Still there are many studies about confinement, including its definition

Features of QCD - asymptotic freedom

- Deep inelastic scattering
 - SLAC (1968)
 - point object at high energy

wikipedia

Particle Data Group 2015

Interaction in QCD

- weak at short distance or high energy
- strong at long distance
- QCD vacuum is anti-screening

QCD at high temperature and density

- QCD is expected to undergo phase transitions at finite temperature and density
 - deconfinement/chiral phase transitions

• Such phase transitions are related to early universe and structure of neutron stars

Current status of study of QCD

- QCD is non-perturbative theory, not easy to study.
 - perturbative expansion of Feynman diagrams does not converge in general
 - phenomenological approaches : qualitative understanding
 - Lattice QCD is unique tool to study QCD nonperturbatively at this moment
 - powerful for some quantities
 - but limited application

Current status of study of QCD

$$Z = \int \mathcal{D}U[\det \Delta]^{N_f} e^{-S_G}$$
$$\int \mathcal{D}[\bar{\psi}\psi] \exp\left(\int d^4x \bar{\psi}A\psi\right) = \det A$$
Formula for Grassmann integral (A : general matrix)

4d Euclidian lattice eight gluons on each link -> importance sampling

- Lattice QCD useful for
 - ground state hadron spectrum
 - nuclear force
 - phase transition at high temperature
 - etc

Current status of study of QCD

- Lattice QCD
 - formulated with imaginary time
 - needs real positive action (Monte Calro)
 - expectation value of observables
- difficult for some applications
 - real time simulation :
 - at finite quark density, action becomes complex: sign problem
 - some quantities are difficult to calculate : excitated states, viscositiy, etc

Today's talks

- Entanglement Entropy (Itou)
 - It is quite new concept in QCD
 - deeper insight for confinement of QCD ?
- AdS/CFT correspondance(Nakamura)
 - new approach to study CFT
 - success to reproduce small viscosity
 - how is for other quantities ?
- Tensor Network(Saito)
 - new approach without Monte Carlo, expected for solution to sign problem.
 - application to gauge theory with confinement and chiral symmetry breaking