Application of AdS/CFT Correspondence to Non-equilibrium Physics Analog Black Holes and Non-equilibrium Steady States

Shin Nakamura (Chuo Univ.) 中村 真 (中央大学理工学部物理学科)

Refs. H. Hoshino and S. N. in preparation.S. N. and H. Ooguri PRD88 (2013) 126003.H. Hoshino and S.N. PRD91 (2015) 026009.

We employ the natural unit: $k_B = c = \hbar = 1$.

Physics in last century

100 years later, they turned out to be related: they are just two sides of the same coin.

Fundamental question

in statistical physics

We have many answers.

Definitions of temperature $P \propto e^{-E_T}$, $t_E \approx t_E + \frac{1}{T}$ Statistical distributions dE = TdSThermodynamics $D = T\mu$ **Fluctuation-dissipation** relation Diffusion const. Two sides of the AdS/CFT same coin. We have another definition of temperature: Hawking $\xi^{a} \nabla_{a} \xi^{b} \Big|_{\text{Horizon}} = 2\pi T \xi^{b} \Big|_{\text{Horizon}}$ temperature **Killing vector**

Photo taken from http://www.iqs.com/iqs-blog/common-ground-quality-management-risk-management/

One side of the coin: general relativity

Einstein has formulated the theory of gravity in terms of geometry of space and time: general relativity.

"Energy-momentum deforms the spacetime."

Gravitational attraction can be explained as an effect of curved spacetime.

Picture:http://www.faculty.iu-bremen.de/course/fall02/c210101/students/BlackHoles/

Black hole

A solution to the Einstein's equation.

Black hole mimics thermodynamics

This resembles of the first-law of thermodynamics

dE = TdS

This is not only an analogy. A black hole radiates a black-body radiation with Hawking temperature: we can assign a temperature to a black hole.

Hawking, S. W. (1974). "Black hole explosions?". Nature 248 (5443): 30.

Temperature in black hole.

Black hole thermodynamics

Natural unit: $k_{B}=c=\hbar=1$.

 κ : surface gravity (the gravitational acceleration at the horizon of the black hole) G_N : Newton's constant,M: mass of the black hole

A: area of the horizon

 κ and A mimic T and S, respectively.

$$T = \frac{\kappa}{2\pi}, \quad S = \frac{A}{4G_N}$$

 $T_{H} = \kappa / 2\pi$, by Hawking.

This does **not** seem to be just a coincidence.

A conjecture, but no (established) contradiction has been found within more than 10,000 citations.

Higher-dimensional gravity?

If the BH corresponds to the thermodynamics of a d-dimensional system, we need the extra direction to define the horizon.

What is AdS?

AdS: Anti de Sitter spacetime

A spacetime whose scalar curvature is negative and constant.

It has a **boundary**.

dS: de Sitter spacetime

(positive constant curvature)

Zero curvature (flat)

Positive curvature

Negative curvature

Picture:http://www.faculty.iu-bremen.de/course/fall02/c210101/students/BlackHoles/

An answer from string theory: AdS/CFT correspondence [J. Maldacena, 1997]

A quantum field theory of gauge particles

A classical theory of gravity on a curved geometry (typically on AdS₅)

The correspondence itself is at the level of microscopic theory.

Mystery in gravity

Many-body system of gauge particles at temperature T

Black hole geometry (typically on AdS₅) at temperature T

 AdS/CFT is a correspondence at the level of microscopic theory of gauge particles.

What we have done in the gravity side was just solving the differential equation.

This is a solution to the Einstein's equation (2nd-order differential equation).

Who did the coarse graining to get the thermodynamics?

Who did the coarse graining?

An "observational fact" in mathematical physics is that, starting with the microscopic theory of the gauge theory, we can reach a description of macroscopic physics by using the AdS/CFT correspondence in terms of gravity.

Micro to macro without "explicit" coarse graining.

I will use this property of gravity to get further information on non-equilibrium physics in this talk.

The system we consider: a "conductor"

Infinite volume

The system is out of equilibrium because of the presence of friction.

Non-equilibrium Steady State (NESS):

- The system in study is out of equilibrium.
- But time-independent (steady).

Setup for NESS

External force and heat bath are necessary.

Power supply drives the system our of equilibrium.

How to realize the steady state with

Map into the gravity dual

Picture of many-body system is taken from internet.

Picture of black hole is taken from https://www.kahaku.go.jp/exhibitions/vm/resource/tenmon/space/theory/theory06.html

<u>D-brane</u>

- A solitonic object in superstring theory. It is like a membrane-like object. (Dp-brane: (p+1)-dimensional object)
- It effectively describes a system of gauge particles.

AdS/CFT based on D3-D7

 $\begin{array}{l} \mbox{SU(Nc) N=4 Supersymmetric Yang-Mills (SYM)} \\ \mbox{theory at large-Nc with $\lambda=g_{YM}^2Nc>>1$.} \\ \mbox{(Quantum field theory)} & \mbox{Finite T} \end{array}$

+ quark sector (N=2 hyper-multiplets)

Type IIBsupergravity at the classical level on weakly curved AdS-BH ×S⁵

+ D7-brane on this curved spacetime

A cartoon in the gravity dual

[Karch and O'Bannon, 2007]

We apply an external electric field E.

$$A_1 = -Et + h(r)$$

Relationship between E and J

[Karch and O'Bannon, 2007]

Ε.

$$(F_{r1})^{2} = J^{2} \frac{g_{rr}}{|g_{tt}|} \frac{E^{2} - |g_{tt}| g_{xx}}{J^{2} - |g_{tt}| g_{xx}^{2}}$$

Again, we have a special point r_{*} given by

$$E^2 - \left|g_{tt}\right|g_{xx} = 0,$$

and J is given by $(J^2 - |g_{tt}|)$

$$\left|g_{xx}^{2}\right|_{r_{*}}=0$$
 in terms of

J(E) is obtained as a non-linear function.

Special point on the D-brane

[Karch and O'Bannon, 2007]

This plays a role of another horizon seen by the fluctuations (of current, for example) in NESS. An analog black hole

> [Gubser 2008, Kim-Shock-Tarrio 2011, Sonner-Green 2012] [S.N. and H. Ooguri, 2013]

FastSonic horizon where the flow velocitySlowexceeds the velocity of sound.

- The sound cannot escape from inside the "horizon".
- It is expected that the sonic horizon radiates a "Hawking radiation" of sound at the "Hawking temperature".

[W. G. Unrhu, PRL51(1981)1351]

We do have "temperature", but any "thermodynamics" with analog black hole has not been established so far. [See for example, M. Visser, gr-qc/9712016]

Special point on the D-brane

[Karch and O'Bannon, 2007]

We do have another temperature in this sense.

[Gubser 2008, Kim-Shock-Tarrio 2011, Sonner-Green 2012] [S.N. and H. Ooguri, 2013]

Now we have two temperatures

We call this effective temperature T_{eff} of NESS.

If the system is driven to NESS, r_H<r_{*} at the order of E².

Two temperatures appear only in the non-linear regime.

The meaning of T_{eff}

Fluctuation of electro-magnetic Fluctuation of current density fields on the D-brane

We can compute the correlation functions of fluctuations by using the technique of AdS/CFT.

$$\int dt \left\langle \delta J(t) \delta J(0) \right\rangle \Big|_{E \neq 0} = 2T_{\text{eff}} \frac{\text{Im } G^{R}(\omega)}{-\omega} \Big|_{\substack{\omega \to 0, \\ E \neq 0}}$$
fluctuation dissipation

See also, [Gursoy et al.,2010]

The fluctuation-dissipation relation at NESS is characterized by the effective temperature (at least for our systems).

Thermodynamics in NESS?

$$dE = T_{\rm eff} dS$$

It is highly nontrivial.

Hawking radiation (Hawking temperature) is more general than the thermodynamics of black hole.

Hawking radiation:

It occurs as far as the "Klein-Gordon equation" of fluctuation has the same form as that in the black hole.

Thermodynamics of black hole:

We need the Einstein's equation. It relies on the theory of gravity.

<u>Summary</u>

At least for some examples of NESS:

- There exists two temperatures in the non-linear regime.
- The effective temperature appears in terms of the Hawking temperature at the effective horizon.
- It agrees with the coefficient in the generalized fluctuation-dissipation relation in NESS.
- T_{eff} < T can happen for some cases.

Time to talk beyond the research fields.

<u>Possible directions</u> with numerical work

The game is how to solve the non-linear partial differential equations in the gravity side.

Numerical work is definitely important.

- Numerical relativity
- But for condensed matter physics

Physics in this century

Let us take the wisdom of gravity into physics of other research field.

International Workshop on

Condensed Matter Physics and AdS/CFT May 25 - 29, 2015 Kavli IPMU, Kashiwa campus, University of Tokyo

Poster Session & Gong Show!

Organizing Committee Rene Meyer (Kavli IPMU) Shin Nakamura (Chuo U./ISSP) Hirosi Ooguri (Caltech/Kavli IPMU) Masaki Oshikawa (ISSP) Masahito Yamazaki (Kavli IPMU) Hongbao Zhang (VUB Brussels) Joe Bhaseen Zhong Fang Phil Phillips Shinsei Ryu Shin-ichi Sasa Suchitra Sebastian Yoshiro Takahashi Cenke Xu

Matt Visser

Invited Speakers include

Ben Craps Sumit Das Johanna Erdmenger Jerome Gauntlett * Sean Hartnoll Elias Kiritsis Hong Liu * Hirosi Ooguri Koenraad Schalm Tadashi Takayanagi Sandip Trivedi

*tentative

Funded by

The University of Tokyo The Institute for Solid State Physics

Hosted by Kavli IPMU in cooperation with ISSP Website: http://indico.ipmu.jp/indico/conferenceDisplay.py?confId=49 Campus access: http://www.ipmu.jp/visitors/access-ipmu