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Abstract

In order to simulate QCD at finite temperature with a cost-effective machine, in Pisa University
I developed in collaboration with my colleagues an implementation of the RHMC algorithm with
Ny staggered flavors running on Graphics Processing Units, using the NVIDIA CUDA programming
language. The main feature of our code is that the GPU is not used just as an accelerator, but
instead the whole Molecular Dynamics trajectory is performed on it, the control of code stream is
the only task assigned to CPU. The main bottlenecks of GPU programming are memory control and
bandwidth, internal and external. Most of the informations described in this report come from the
article QCD simulations with staggered fermions on GPUs [1].
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1 Introduction

Graphics processing units (GPUs) have been developed originally as co-processors meant to fastly deal
with graphics tasks. In recent years the video game market developments compelled GPUs manufacturers
to increase the floating point calculation performance of their products, by far exceeding the performance
of standard CPUs in floating point calculations. The architecture evolved toward programmable many-
core chips that are designed to process in parallel massive amounts of data. These developments suggested
the possibility of using GPUs in the field of high-performance computing (HPC) as low-cost substitutes of
more traditional CPU-based architectures: nowadays such possibility is being fully exploited and GPUs
represents an ongoing breakthrough for many computationally demanding scientific fields, providing
consistent computing resources at relatively low cost, also in terms of power consumption (watts/flops).

Due to their many-core architectures, with fast access to the on-board memory, GPUs are ideally
suited for numerical tasks allowing for data parallelism, i.e. for SIMD (Single Instruction Multiple Data)
parallelization. The numerical simulation, by Monte-Carlo algorithms, of the path integral formulation
of Quantum Field Theories, discretized on a Euclidean space-time lattice, is a typical such task: one has
to sample the distribution for a system with many degrees of freedom and mostly local interactions.

Quantum Chromodynamics (QCD), the Quantum Gauge Theory describing strong interactions, is
a typical example where numerical simulations represents the best tool to investigate systematically
specific features of the theory and give an answer to many important unsolved questions, regarding e.g.
color confinement, deconfinement and the values of hadron masses. Lattice QCD and its computational
needs has represented a challenge in the field of HPC since more than 30 years, being often the stimulus
for new machine developments (think e.g. of the series of APE machines [2]).

The introduction of GPUs in lattice QCD calculations started with the seminal work of Ref. [3],
in which the native graphics APIs were used, but the real explosion of interest in the field followed
the introduction of NVIDIA’s CUDA (Compute Unified Device Architecture) platform, that effectively
disclosed the field of GPGPU (General Purpose GPU []), providing a more friendly programming
environment.

GPUs have maintained their role of co-processors in most numerical applications, where they are
used as accelerators for some specific, time demanding purposes. In the same spirit, most of previous
studies on the application of GPUs to lattice QCD calculations were mainly aimed at using them together
with the standard architectures in order to speed up some specific steps, typically the expensive Dirac
matrix inversion. Our intent is instead to use GPUs in substitution of the usual architectures, actually



performing the whole simulation by them: one still needs a CPU to run the main program, but mostly
in the role of a mere controller of the GPU instruction flow.

To achieve this result we found simpler to write a complete program from scratch instead of using
existing software packagesﬂ in order to have a better control of all the steps to be performed and
ultimately transferred to the GPU. Our implementation uses NVIDIA’s CUDA platform together with a
standard C++ serial control program running on CPU. The specific case considered in the present study
regards QCD on a hypercubic lattice with quark fields discretized in the standard staggered formulation.

The report is organized as follows. In Section [2| we give more details about the lattice discretization
of QCD considered in our study and the simulation algorithm adopted. In Section [3] we review some
of the fundamental features of GPU architectures. In Section 4] we describe our implementation of the
algorithm on GPUs and discuss the achieved performances.

The code is freely available for downloading at the github repository of reference [IJ.

2 Lattice QCD and the simulation algorithm

QCD is a Quantum Field Theory based on the symmetry under local non-Abelian gauge (color) trans-
formations belonging to the group of special unitary 3 x 3 complex matrices, SU(3). It describes six
different flavors of spin 1/2 colored particles (quarks), which transforms in the fundamental (triplet)
representation of SU(3) and interact through the gauge field, which lives in the Algebra of the color
gauge group and describes 8 colored, spin 1 particles known as gluons.

An elegant, gauge invariant lattice discretization of the theory is given in terms of gauge link variables
U, (n), where n indicates a lattice site and  is one of the four Euclidean space-time directions [6]. They
are the elementary parallel transporters belonging to the gauge group and associated to each elementary
link connecting two neighboring sites of the lattice. Hence in total we have 4L, L, L,L; SU(3) matrixes,
where L,, is the number of lattice sites along direction i, which in present simulations is typically not
larger than 10%2. Quark fields ¢(n) instead live on lattice sites and carry a color index, hence they are
complex color triplets, one for each flavor and Dirac index.

The discretized Euclidean Feynman path integral, giving e.g. a representation of the thermal partition
function, is written as

Z = /@U@J}@we_sg[[]]—iww[(]]w (1)

where Sy is the pure gauge part of the action, describing gluon-gluon interactions and written in terms
of traces of products of link variables over closed loops, while 1M [U]v is a bilinear form in the fermionic
variables, which describes quark-gluon interactions, with M[U] a large sparse matrix written in terms of
the gauge link variables.

The functional integration in Eq. is over all link variables (gauge group invariant integration for
each link) and all quark fields. Actually, due to their fermionic nature, the quark fields appearing in the
path integral are Grassmann anticommuting variables; the best way we know to numerically deal with
them is to integrate them explicitly. That results in the appearance of the determinant of the fermion
matrix M[U]:

Z = / DU D) Pape= S lWI=0MIUIY o / PU det(M[U])e~ %], (2)

Notice that, in general, a fermion determinant appears for each quark species and that the determinant
term becomes a trivial constant when all quarks have infinite mass and decouple (pure gauge or quenched
limit). One can show that, apart from specific difficult cases (e.g. QCD at finite baryon density), the
integrand in Eq. is a positive quantity, admitting a probabilistic interpretation, so that one can
approach the numerical computation of the path integral by importance sampling methods, which are
typically based on dynamic Monte-Carlo algorithms.

The most difficult, time consuming part in such algorithms consists in taking properly into account
the fermion determinant det(M[U]). The best available method is to introduce dummy bosonic complex

1On earlier stage we wrote a staggered version of JLab’s Chroma working on GPUs.



fields ¢, which come in the same number as the original fermionic variables and are known as pseudo-
fermions [7]:

7 /@U (det (M[U]))? e=59IU] /@U@qs exp ( — 8,[U] = ¢* (M[U]TM[U])‘lqs) (3)

where we have explicitly considered the case of two identical quark species, as in the case of two light
flavors (u and d quarks) with all other flavors decoupled.

The particular lattice discretization implemented in the present study considers a simple plaquette
action for the pure gauge term, i.e. products of four gauge link variables around the elementary closed
square loops (plaquettes) of the lattice, and a standard staggered discretization for the fermionic term.
That means that fermion fields living on lattice sites have only color indexes (Dirac indexes can be
reconstructed afterwards combining fields living on different lattice sites), while the fermionic matrix
reads as follows:

4
1 N
Mnl,nz [37 Q] = am5n1,n2 + 5 va(nl) (Uv(n1)5n17n2—f/ - Uzj(nl - V)5H1JL2+19) ; (4)
v=1

where ny and ns are 4-vectors with integer components labelling lattice sites, 7 is an elementary lattice
versor, 1, (n) = (—1)"% " +"-1 are known are staggered fermion phases and a is the lattice spac-
ing. Color indexes are implicit in Eq. (the identity in color space is understood for the mass term
proportional to am).

The staggered discretization differs from other (e.g. Wilson) fermion discretizations for the absence
of the additional Dirac index: that implies lighter algebra computations which have an effect both on
the overall computational complexity and on the maximal performances, as we shall explaing in details
later on.

A particular feature of the staggered fermion matrix in Eq. is that it describes four flavors. When
simulating a different number of flavors one has to use a trick known as rooting. Ny flavors of equal
mass are described by the following partition function

7 /@U (det(M[U])N/* e=SalUT (5)

2.1 Numerical algorithm

A convenient algorithm to simulate the action in Eq. is the Hybrid Monte Carlo [§] (HMC). The idea
is very simple and it is conveniently exposed by using as an example the case of a single variable with
action S = V(yp), i.e. distributed proportionally to exp(—V (p))dy. As a first step a dummy variable p,
corresponding to a momentum conjugate to ¢, is introduced using the following identity:

/dsoexp(—V(w)) x /dsadpeXp (—V(@) - ;p2> : (6)

It is trival that expectation values over ¢ are untouched by the introduction of p, which is a stochastically
independent variable. The basic idea of the HMC algorithm is to sample the distribution in p and ¢ by
first extracting a value of p according to its Gaussian distribution and then performing a joint molecular
dynamics evolution of p and ¢ which keeps the total “energy” V(y) + p?/2 unchanged, obtaining an
updated value of ¢ as a final result. Going into more details, the HMC proceeds as follows:

1. a random initial momentum is generated with probability o e_%pz;

2. starting from the state (¢, p), a new trial state (¢’,p’) is generated by numerically solving in the
fictitious time 7 the equations of motion derived from the action V (¢) + 3p?, i.e.

¢g=p; P=-=; (7)

such equations are integrated numerically using a finite time step A7. As a consequence the energy
is conserved only up to some power of A7, depending on the integration scheme adopted;



3. the new state (¢’,p’) is accepted with probability min(1,e~%%) where §S = S(¢',p') — S(,p)
(Metropolis step).

It can be shown (see e.g. [8, @]) that the sequence of the ¢ configurations obtained in this way is
distributed with the correct e~V (#) probability provided the solution of the equation of motion satisfies
the requirements

e the evolution is reversible, i.e.
(p,p) = (¢',0) & (¢, =) = (v, —p) (8)
e the evolution preserves the measure of the phase space, i.e.

¥’ p') _
det Dop) 1 (9)

A large class of integrators that satisfy these two constraints are the so-called symmetric symplectic
integrators, the simplest member of this class being the leap-frog or PQP scheme (for improved schemes
see e.g. [10} 1T}, 12]).

In the particular case of the action in Eq. (3)), the momenta are conjugate to the gauge link variables:
they are therefore 3 x 3 complex matrices H,(n) (one for each gauge link) living in the algebra of the
gauge group, i.e. they are traceless hermitean matrices writable as H,(n) = >, T%wy(n) where T are
the group generators, and the action associated with momenta is simply given by >, Tr(H,(n)H,(n)).
A convenient implementation of the picture above is then given by the so-called ® algorithm of Ref. [13]:

1. a vector R of complex Gaussian random numbers is generated and the pseudofermion field is
initialized by ¢ = M[U]'R, in such a way that the probability distribution for ¢ is proportional to
exp(—¢* (MTM)~'¢);

2. the momenta are initialized by Gaussian random matrices (i.e. each wy(n) is extracted as a normally
distributed variable);

3. the gauge field and momenta are updated by using the equations of motion;
4. the final value of the action is computed and the Metropolis step performed.

Point 3 is the more time consuming, since the calculation of the force requires at each step to solve the
sparse linear system

(MU MU]) X = 6 (10)

which is usually performed by means of Krylov methods (see e.g. [14]). For staggered fermions a
complication is the presence of the 4—th root of the determinant in the action: Eq. becomes

)Nf/4

(Mw)m)) " x =0 (11)

where N is to the number of degenerate flavours. In order to overcome this problem the Rational Hybrid
Monte Carlo (RHMC) was introduced in [I5], in which the root of the fermion matrix is approximated
by a rational function, which is then efficiently computed by means of the shifted versions of the Krylov
solvers (see e.g. [16]).

In order to speed-up the simulations, the following common tricks were implemented

e even/odd preconditioning [17]
e multi-step integrator, with action divided in gauge and fermion part [I8]
e improved integrator, second order minimum norm, see e.g. [12]

e multiple pseudo-fermions to reduce the fermion force magnitude and increase integration step size
[19]

e different rational approximations and stopping residuals for the Metropolis and the Molecular
Dynamic steps [19]



Device Memory

! ! !

Multiprocessor 1| |Multiprocessor 2 Multiprocessor n
Core Core | | Core

Core | | Core
2 1 2 1 2
Core Core
P 14 p
Registers and Registers and Registers and
Shared Memory | | Shared Memory Shared Memory

Core
1

Figure 1: Architecture of a modern NVIDIA graphics card. Figure taken from [20].

GPU Cores | Bandwidth | Gflops | Gflops | Device
GB/s single | double | Memory
(peak) | (peak) | GB
Tesla C1060 240 102 933 78 4
Tesla C2050/2070 | 448 144 1030 515 3/6

Table 1: Specifications of the NVIDIA cards used in this work.

3 Fundamental NVIDIA GPU architecture features

In this section we will review the main features of the GPUs architecture which are to be taken into
account in order to efficiently use their computational capabilities. Modern GPUs are massively parallel
computing elements, composed of hundreds of cores grouped into multiprocessors. The typical archi-
tecture of a modern NVIDIA graphic card is outlined in Fig. and the most important point for the
following is the presence of three different storage levels. Roughly speaking the architecture of ATI cards
is similar.

Primary storage is provided by the device memory, which is accessible by all multiprocessors but
has a relatively high latency. Within the same multiprocessor, cores have also access to local registers
and to shared memory. Shared memory is accessible by the threads of the same multiprocessor and its
access is orders of magnitude faster than device memory one, being very close to the computing units;
however, while the total amount of device memory is of order of few GBs, the local storage is only 16KB
per multiprocessor both for the registers and for the shared memoryﬂ so that it is typically impossible
to use just these local fast memories.

In order to hide the latency time of the device memory it is convenient to have a large number of
threads in concurrent execution, so that when data are needed from device memory for some threads,
the ones ready to execute are immediately sent to computation. The highest bandwidth from device
memory is achieved when a group of 16 threads accesses a contiguous memory region (coalesced memory
access), because its execution requires just one instruction call, saving a lot of clock-cycles. This will be
crucial in the following, when discussing the storage model for the gauge configuration.

Double precision capability was introduced with NVIDIA’s GT200 generation, the first one specifically
designed having in mind HPC market, and by now there is only a factor 2 between the peak performance
in single and double precision. In Tab. the specifications of the GPUs used in this work are reported.

Communications between the GPU and the CPU host are settled by a PCI-E bus, whose typical
bandwidth is 5GB/s, to be compared with the GPU internal bandwidth between device memory and
cores of order 100 GB/s. This is clearly the main bottleneck in most of GPU applications. When
allowed by memory constraints the optimal strategy is thus to copy the starting gauge configuration
(and momenta) on the device at the beginning of the simulation and to perform the complete update on

2For NVIDIA Tesla cards 10 series. The 20 series has 64KB of on-chip memory that can be partitioned as shared and
L1 cache.



momenta and pseudofermions generation (CPU)
momenta and pseudofermions uploaded to the GPU
starting energy computed in double precision (GPU)

final energy computed in double precision (GPU)
perform Metropolis accept/reject test (CPU)
download/reload configuration from/to GPU

Uy (t), Hu (1)

U, (), Hu(D)

whole evolution trajectory runs on GPU in single precision
negligible CPU/GPU communication at this stage

Figure 2: Sketch of our implementation of the RHMC algorithm on GPUs

the GPU, instead of using it just to speed up some functions and transferring gauge field back and forth
between host and device memories. With two flavours of fermions we checked that the largest lattice
fitting on the device memory of a C1060 card is about a 32* one, which is too small for typical zero
temperature calculations but large enough for finite temperature ones, for which the temporal extent of
the lattice is typically much smaller than the spatial one (lattices as large as a 503 x 8 or 643 x 4 fit well
on the same card).

In our implementation of the Dirac kernel a different thread is associated with every evenE] site in the
fermion update and to every link in the gauge update, so that different threads do not cooperate. Shared
memory is thus used just as a local fast memory and, unfortunately, no data reuse is possible. This
setup is forced by the high ratio between data transfer and floating point operations, which is around
1.5 bytes/flop for the single precision Dirac kernel.

4 Details of the implementation

In the following we shall discuss various aspects of our implementation of the RHMC algorithm on
GPUs and present the achieved performances. Our guiding strategy has been that of bringing as much
as possible of the computations on the GPU, leaving for the CPU only light or control tasks: such
strategy has the twofold advantage of exploiting the computational power of the GPU at its best and of
minimizing costly memory transfers between the CPU and the GPU; the strategy is facilitated by the
fact that all heavy tasks of a lattice QCD computation can be easily parallelized.

A sketch of our typical implementation of the RHMC trajectory is reported in Fig. [2| The heat-bath
creation of momenta and pseudofermions at the beginning of the trajectory is the only part of the code
which, even if portable to the GPU, has been kept on the CPU: we have decided to do so since it is
computationally very light and since in this way we have avoided to have a random number generator
running on the GPU. The whole molecular dynamics part is run on the GPU in single precision, with
negligible involvement of the CPU.

4.1 Precision issues

We will now address the issues related to the use of double precision. The main drawback of double
precision is clear from Tab. [I} single precision floating point arithmetic always outperforms the double

3Because of the odd/even preconditioning pseudo-fermions are defined on even sites only.



Si(1) |S1(2) [S1(3) | -+ | -+ [S2(1) |S2(2) |S2(3)

S3(1) [ S3(2) [S3(3) | --- -+ | D1(1) | D1(2) | D1(3)

Dy(1) | Da(2) | D2(3) | - -+ | D3(1) | D3(2) | D3(3)

Figure 3: Gauge field storage model: S;(k), S2(k), S3(k) are three float4 that store the 32 most signif-
icant bits of the k—link’s elements. Analogously D1 (k), Da(k), D3(k) are £loat4 that store the 32 less
significant bits.

one, although in the Fermi architecture the double precision penalty was significantly reduced. Another
motivation to prefer the single precision is to speed up internal memory transfers because lattice QCD
calculations are typically bandwidth limited.

The need for double precision is related to the evaluation of the action for the Metropolis step, to be
performed at the end of a molecular dynamics trajectory and which guarantees the stochastic correctness
of the RHMC algorithm (see also Sec. ) Because of that the first and the last Dirac inversions (the
ones needed for the Metropolis) are performed in double precision, while the inversions needed in the
fermion force calculation are in single precision. The update of the gauge field is always performed in
single precision and double precision is used only in the reunitarization.

In order that the HMC algorithm reproduces the correct probability distribution, i.e. that it respects
the detailed balance principle, another property which has to be ensured is the reversibility of the
molecular dynamics trajectories [§]. Since the gauge updates use only single precision we can expect
reversibility to be valid only up to single precision; this will be extensively analyzed in the following, see

Sec. .

4.2 Memory allocation scheme

As previously noted a correct allocation scheme is of the utmost importance in order to efficiently use
the device memory. For the case of the staggered fermion discretization of QCD, the storage of the gauge
configuration is the most expensive one, so we will concentrate just on this. Similar techniques can be
used also for the storage of the momenta and the pseudo-fermions.

As stated before, QCD calculations on GPU are typically bandwidth limited. This can be easily
seen by noting that in simulations the largest amount of time is needed by the Krylov linear solver,
whose elementary step is the product between the Dirac matrix and the pseudo-fermion fields, which is
essentially a huge number of products between 3 x 3 unitary matrices and complex 3—vectors. To compute
every single product an equivalent of 72 real number elementary operations have to be performed and 96
Bytes of memory have to be allocated (in single precision). By using the specifications given in Tab.
we then see, e.g. for a C1060 card, that the maximum performance achievable in single precision is below
10% of the peak performance of the GPU.

Tt is thus convenient not to storage all the elements of the SU(3) matrices, but to use a representation
in terms of fewer parameters: in this way we can reduce the amount of memory exchange at the expense
of increasing the computational complexity. The additional calculations do not introduce significant
overhead and they are actually negligible compared to the gain in the memory transfers. We used a 12
real number representation: only the first two rows of the 3 x 3 unitary matrices are stored, while the third
one is reconstructed on fly when needed. It is actually possible to further reduce memory transfers by
adopting a minimal 8 parameter representation of SU(3) matrices [25]; however that requires considerable
computational overhead which limits the additional gain obtained, therefore we decided to not implement
it in our code.

Since in the Metropolis step the inversion of the Dirac matrix in double precision is required, we need
to store a double precision gauge configuration, although in most of the calculations it will be used just
as a single precision one. In order not to waste bandwidth and device memory, it is useful to write a
double precision number a by using two single precision numbers b and ¢: b is defined by the 32 most



Lattice | Bandwidth GB/s | Gflops

4 x 163 56.84 £ 0.03 49.31 £ 0.02
32 x 323 | 64.091 + 0.002 55.597 £ 0.002
4 x 483 69.94 +0.02 60.67 £+ 0.02

Table 2: Staggered Dirac operator kernel performance figures on a C1060 card (single precision).

significant bits of a, while ¢ stores the 32 less significant ones. In C language this amounts to

b= (float)a
¢ = (float)(a — (double)d)

In computations where only single precision is required we can just use b instead of a, otherwise there
are two different strategies available: to use b and c directly, effectively avoiding the explicit use of
double precision arithmetic (see e.g. [21]) or to reconstruct the double precision number a to be used
in calculations. Although the first method allows for the use of hardware without double precision
capabilities, we implemented this second method, which is expected to be more efficient on double
precision capable hardware.

To get coalesced memory accesses it is crucial for blocks of thread in execution to use contiguous
regions of device memory. This behaviour is maximized if we adopt the storage model shown in Fig.
the index in parenthesis identifies the link and range in the interval [1,4 x volume], the most significant
bits of the first two rows of the k—th SU(3) link matrix are grouped in three float4, denoted by
S1(k), Sa(k) and Ss(k), analogously Dj(k), D2(k) and Ds(k) take into account the less significant bits.
The use of texture memory is a further improvement used to reduce the effects of the residual imperfect
mMemory accesses.

The performance of the Dirac operator kernel (one application of the matrix Eq. to a random
vector) in single precision which is obtained by means of this storage scheme is shown in Tab. [2} while
using 60 — 70% of the bandwidth, only 5 — 6% of the peak performance is reached, consistently with the
previous analysis.

4.3 Inverter

As noted in Sec. it is convenient to execute on the GPU complete sections of the code instead of using
it just to speed up some specific functions. The most time consuming of these sections is the inversion
of the Dirac operator.

The inversion of the Dirac operator in lattice QCD simulations is usually performed by using Krylov
space solvers; for staggered fermions the optimal choice is the simplest one of this class of solvers: the
Conjugate Gradient (CG) algorithm (see [22]).

In all Krylov space solvers the approximate solution and its estimated residual are calculated re-
cursively and the value of the estimated residual is used to terminate the algorithm. While in exact
arithmetic the estimated residual coincides with the residual of the approximate solution, in finite pre-
cision this is no more the case and the estimate diverges form the true value.

It can be shown that, for the solution of the linear equation Az = b by means of Krylov methods,
the following estimate holds (see [23])

b — Az gy —rll ( Ix(j>>
<eO(k) |1+ max (12)
[ Alf||] i<k

]

where z () is the approximate solution at the k—step of the algorithm, r(;) is its estimated residual and
€ is the machine precision.

For a single precision Dirac inversion a typical value for the minimum true residual is 1072 — 1073:
that is too large to ensure the correctness of the Metropolis step, therefore at least in that case a double
precision solver is thus needed.

In standard Krylov solvers this problem can be overcome by using the residual replacement strategy:
sometimes the true residual is explicitly calculated in double precision and the algorithm is restarted.
By this method it is possible to obtain reliable results, as happens with double precision calculations,



but using almost always single precision arithmetics. Residual replacement methods are well understood
theoretically [24] and have been successfully applied to QCD calculations on GPUs [25].
However, in RHMC we need solvers for shifted systems, i.e. for the system

(At+o)z =0 (13)

for various o; values. Krylov solvers for shifted systems exist and they allow to reuse the results of the
matrix products needed to solve (A + gg)x = b to compute the solution also of (A4 o;)x = b for i >0
(see e.g. [16]). The algorithm of these solvers is however much more rigid than the usual one of Krylov
solvers and in particular the starting guess solution has to be the null one, thus preventing the possibility
of restarting. For this reason the Dirac inversions in the Metropolis step have to be performed completely
in double precision.

Recently it was noted in [26] that, on GPUs, it could be most convenient to use ordinary Krylov solvers
also to compute the solutions of Eq. , in order to allow the use of the residual replacement strategy
and of other techniques to improve the convergence of the solver, like preconditioning or multigrid, which
are of difficult implementation for shifted solvers.

4.4 Algorithm tests

We will now report on some test performed in order to gain a better understanding of the possible
influence of the mixed precision setting on the simulation results.

The tests have been performed in the Ny = 2 theory, with two degenerate quark flavours of bare
mass am = 0.01335, and mostly on finite temperature lattices with a time extension N; = 4. With such
settings the deconfinement transition is known to be located at 8. ~ 5.272 [27], therefore we have chosen
to work at 8 = 5.264 in order to be in the confined phase with broken chiral symmetry, where almost
zero modes are expected to exist for the Dirac matrix, as a consequence of the Banks-Casher relation
[28].

Two lattices of extension 4 x 16% and 4 x 323 have been tested; in both cases the number of pseud-
ofermions was 2 and the rational approximations adopted in the Molecular Dynamic and Metropolis step
were of degree 8 and 15 respectively. A statistics of O(10%) MD trajectories, each of length 7 = 1, has
been collected for each test. We denote by n,,q the number of (fermionic) integration step used in the
simulation and dry/dr, the ratio between the fermionic integration step and the gauge one used in the
multi-step 2M N integrator. The parameters r,,q and 7,0 are the stopping residuals to be used for
the Krylov solver in the MD evolution and in the Metropolis step respectively.

To test the reversibility of the MD evolution, at the end of the trajectory (7 = 1) the sign of the
momenta was reversed and the evolution continued until 7 = 2. We then measured the quantities (see
129])

AC= | N U 2,y 2) — U (t 2y, 2)|12 /dof (14)
t,x,y, 2,0

AM = Z ||H,(f:0)(t,x,y,z) + Hffﬂ) (t,z,y,2)||?/dof (15)
t,x,Yy, 2,0

where |- || is the matrix 2—norm (||A[* = 37, |A;;]?) and dof = 4 x 8 x N x N is the number of degrees
of freedom. AC and AM are thus estimators of the reversibility violation for degree of freedom of the
gauge fields and the momenta respectively.

We tested various combination of single and double precision inverters:

D;: Metropolis in double precision, rmewro = 1072, MD in double precision, 7pq = 107°
Dy: Metropolis in double precision, rmewro = 107, MD in double precision, 7p,q = 1077
Ds: Metropolis in double precision, rmeiro = 107°, MD in double precision, 7mq = 107°
Dy4: Metropolis in double precision, rmewro = 1072, MD in double precision, 7pq = 1073

Fy: Metropolis in single precision, 7,,e¢r0 = 1072, MD in single precision, r,,q = 1073



M P;: Metropolis in double precision, 7metro = 1077, MD in single precision, ry,q = 1073

M Ps: Metropolis in double precision, 7,mero = 1077, MD in single precision, ry,q = 1073

4.4.1 4 x 163 lattice

For this lattice we used n,,q = 12 and dry/dr, = 10. All the different runs started from a common
thermalized configuration and in Fig. the values of some observables are shown, from which it follows
that all the different runs give compatible results.

The values of the reversibility estimators AC and AM are shown in Fig. and, as expected, they
are compatible with reversibility violations at the level of single precision, which are inevitable since the
gauge update is completely performed in single precision. In this setting the precision of the inversions
does not seem to influence the reversibility of the algorithm in a sensible way: the differences between
the various runs are of order of 1%. Also the difference between the action at the beginning and end of
a MD trajectory was monitored and its behaviour is shown in Fig. @; again no appreciable difference
is observed between the different runs.

4.4.2 4 x 323 lattice

For this larger lattice we used n,,q = 16 and d7y/dr, = 16. Again all the runs started from a common
thermalized configuration and the measurement performed in the different runs give compatible results.

Also in this case the reversibility estimators appear to be independent of the precision of the inverter
within 1%, see Fig. , however both estimators are larger than for the 4 x 162 case. Since we have seen
that the reversibility of the algorithm does not appear to be influenced by the precision of the inverter, it
is natural to guess that the increased reversibility violation has to be ascribed to the increased number of
gauge updates. In order to test this guess we have performed other runs, fixing again the total trajectory
length to 7 = 1 and varying n,q and dry/d7y; two of them are reported in Fig. as well, showing
reduced violations of reversibility:

MP12 same as M P; but with n,,q = 12 and de/dTg = 20;
MP? same as M Py but with n,,q = 8 and dr/dr, = 20.

All results can be summarized by Fig. , from which it is clear that values obtained for AM (and
analogously for AC) for different combinations of n,,q and dry/dr, collapse on the same linear function
when reported against the number of total gauge updates (that is n,,q x dry/dry), consistently with
the hypothesis that most of the reversibility violations is due to the instability generated by the single
precision gauge update.

Although the precision of the inverter does not have large consequences on the reversibility violations,
which we just saw to be mainly related to the gauge updates, from Fig. @ it clearly emerges that for
large lattices double precision is needed in the Metropolis step (i.e. in the first and last inversion) in
order to have a good acceptance ratio.

4.5 Performance

We have compared the performances achieved by our code on C1060 and C2050 architectures with those
obtained by twin codes running on a single CPU core (we have chosen different core architectures) and on
an apeNEXT crate (256 processors). The twin codes have been reasonably optimized for the respective
architectures, even if room for further optimization may have been left (for instance we have not written
explicit assembly routines for matrix matrix multiplication). We have made comparisons on different
lattices L3 x 4 with varying spatial size, and for two different values of the bare quark mass, am = 0.01335
and 1.0; parameters like n,,q and dry/dr, have been chosen run by run to optimize the acceptance ratio.

In Fig. [10]the RHMC update time on different architectures is shown for the different explored cases.
For both the mass values the scaling with the size of the lattice is good. In fact it is a characteristic
feature of GPUs that increasing the lattice size improves the computational efficiency, as seen also in
Tab. 2} this happens because with large lattices internal latencies are hidden more effectively. Time gains
for Tesla C1060 and C2050 are shown in Tab. [3] and Tab. [d} particularly impressive is the comparison
with the results obtained by using an apeNEXT crate.
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Figure 4: Lattice 4 x 162, values of some observables for the different runs. The black solid line is the
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Figure 10: Run times on different architectures. For the Opteron and Xeon runs a single core was used.

high mass low mass
spatial size 32 \ 48 \ 64 | 16 \ 32 \ 48
Opteron (single core) | 65 | 75 | 75 | 40 | 50 | 85
Xeon (single core) 50 | 50 | 50 | 15 | 25 | 30
apeNEXT crate ~3 ~1

Table 3: NVIDIA C1060 time gains over CPU and apeNEXT.

It is interesting to notice that in the high mass case the time gains over CPU and apeNEXT codes
are larger with respect to the low mass case, a fact that can be easily explained as follows. At low quark
mass most of the time is taken by the Dirac matrix inversion, which involves mostly matrix - vector
multiplications: assuming that the on fly reconstruction of the third matrix row is completely masked,
we need to trasfer (in single precision) 72 bytes to perform 72 floating point operations, so that the GPU
performance is bandwidth limited to about 100 Gflops. At high quark mass, instead, the effort needed
for Dirac inversion becomes less important and matrix - matrix multiplications needed for the pure gauge
part of the code take a large fraction of time: in this case we need to transfer 96 bytes (4 rows) to make
216 floating point operations, so we expect to be roughly a factor 2.25 more efficient than in the matrix
- vector multiplication. In order to test our argument, we have measured separately the performances
achieved by the pure gauge part of our code, obtaining the time gains reported in Table [§] which, when
compared with the low mass performances, roughly confirm our estimate; such time gains are comparable
to those obtained by GPU implementations of Monte-Carlo codes for pure gauge theories [30].
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high mass \ low mass
spatial size 32 [48 [64 [16]32]48 |
Opteron (single core) | 115 | 130 | 140 | 65 | 75 | 140
Xeon (single core) 85 | 8 | 100 | 30 | 40 | 50
apeNEXT crate ~6 ~2

Table 4: NVIDIA C2050 time gains over CPU and apeNEXT (same code as for C1060, no specific C2050
improvement implemented).

C1060 | C2050
spatial size 324864 [32 [48 [64
| gain factor over Xeon (single core) [ 80 [ 90 [ 120 [ 135 | 145 | 210 |

Table 5: NVIDIA C1060 and C2050 time gains over CPU for the pure gauge part sections of the code
(link evolution and pure gauge contribution to momenta evolution in molecular dynamics).
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